侵权投诉
当前位置:

OFweek电子工程网

功率设计

正文

混合动力及电动汽车的电池管理技巧

导读: 电池管理系统的任务是仔细跟踪和控制每节电池的充电状态。电池管理系统的测量准确度至关重要,因为它决定了每节电池能工作在多么接近其可靠的充电范围。最大限度地提高可用容量的能力决定了所需的电池数量,而电池数量对成本和重量有很大的影响。

  对于混合动力汽车(HEV)和电动汽车(EV)而言,使用锂离子电池可在功率、能量密度、效率和环境影响之间取得最佳平衡。但同时,锂离子电池也是易损坏和危险的,而汽车环境又相当棘手、难以应付。混合动力汽车和电动汽车中电子产品面临的挑战是,如何弥补要求苛刻的汽车环境和电池敏感特性之间的差距。

  考虑到汽车对能量、功率和环境的要求,安全、可靠地使用大型锂离子电池组绝对不是一个简单的任务。锂离子电池以完全充电或完全满放电状态工作时,其容量会降低。考虑到循环充电、电池组之间的差别和不同的环境条件,每节电池的容量都会随着时间推移而降低并产生偏离。因此,要实现15年、5000个充电周期的目标,每节电池都必须保持在有限的工作范围内工作。通过控制每节锂离子电池的充电状态(SOC),可以最大限度地提高电池组的容量,同时尽可能地减缓容量的下降。确保高效率、安全地使用汽车电池组是电池管理系统(BMS)的责任。

  电池管理系统的任务是仔细跟踪和控制每节电池的充电状态。电池管理系统的测量准确度至关重要,因为它决定了每节电池能工作在多么接近其可靠的充电范围。最大限度地提高可用容量的能力决定了所需的电池数量,而电池数量对成本和重量有很大的影响。准确地测量每节电池的电压相当困难,因为电池组中的电池易受高共模电压和高频噪声的影响。为便于理解这一点,可以考虑以下事实:电动汽车/混合动力汽车的电池组通常由100至200个串联的电池组成,电压非常高。这类电池组必须提供可能超过200A的快速充电和放电电流,在电池组的顶端,电压瞬态有可能超过100V。

  对成本和可靠性的关注驱动着汽车电子产品向更高集成度、更少组件数的方向发展。在高度复杂的电池管理系统中,这种趋势尤其明显,我们看到这类系统中已经出现了诸如凌力尔特的LTC6802等电池监视IC。在新型电池管理系统中,这类高集成度器件是关键的数据采集组件,与之前的分立式解决方案相比,这类器件减少了成本、占用的空间以及组件数。

  电池监视器的主要功能是直接测量串联电池的电压,通常每个IC监视12个通道。这类IC中还包括电池容量平衡控制和额外的测量输入(如用于温度的输入)。为了管理高压电池组,这类器件通常设计为通过菊花链式串行接口相互通信。电池管理系统中,通常不太可能集成到电池监视IC中的元素就是嵌入式软件。SOC算法是受严密保护的技术,针对化学组成、尺寸、外形、工作条件和应用而定制。对于新型高压、大功率电池组和嵌入式软件而言,现有的算法可能并没有价值,这使得故障机制效果分析(FMEA)变得复杂,此时系统设计工程师无法进行直接控制。图1说明了由任意节电池组成的电池模块的基本配置,其中电池管理系统的算法是软件编码的,并由开发商独家控制。

 

  

  图1:电动/混合动力汽车电池模块的基本拓扑。

 

  电池监视IC的一个关键考虑因素是,怎样处理将会碰到的汽车噪声。例如,很多电池监视器采用快速SAR转换器实现电池的数字化,在超过100个通道的数据采集系统中,这似乎能带来很多好处。但是,汽车中的噪声环境需要进行大量滤波,而且这种滤波决定了有效吞吐量(而非采样率)。基于这个原因,Delta Sigma ADC比SAR转换器更有优势。对于给定的10kHz噪声抑制量而言,每秒1000次采样的ADC可提供与每秒100万次采样的SAR ADC相同的吞吐量。例如,LTC6802采用一个每秒1000次采样的???ADC,该ADC在10ms时间内可顺序对10个输入通道采样。内置的线性相位数字滤波器对10kHz开关噪声提供36dB的噪声抑制。要在10kHz时获得相同的噪声抑制,每秒100万次采样的SAR转换器在每节电池上都需要一个转角频率为160Hz的单极RC滤波器(参见图2)。RC滤波器的12位稳定时间为8.4ms,即使SAR ADC能在10us时间内顺序对10个通道采样,但由于滤波器的响应,每8.4ms超过1次的扫描也是没有意义的。

 

  

  图2:转换器和采用RC电路的SAR转换器的比较:转换器以更好的滤波性能提供同样的有效吞吐量。

 

 

  如果有一长串电池监视IC,那么串行接口也是一个重要的考虑因素,凌力尔特公司可提供两种截然不同的选择。一种选择(也是大多数电池监视IC所支持的)是菊花链式接口。采用菊花链式接口时,链中每个IC无需光耦合器或隔离器就可与相邻IC通信,只留下底部的器件与单个微处理器或控制单元连接。此外,凌力尔特还提供第二种选择,即采用单独可寻址的串行接口。采用这种方案时,单个微控制器通过隔离与多个并联器件通信。这种拓扑提供本身更加可靠的“星形配置”,因为失去与一个器件的通信并不会隔断与其他任何器件的通信。可寻址器件还可用在经过修改的菊花链式拓扑中,在这种拓扑中,相对昂贵的隔离器已经成为过去,取而代之的是较便宜的“晶体管化”SPI总线配置。最终可获得具有极宽兼容范围的串行接口。

  经过两年的生产和经过实践检验的设计,凌力尔特推出了第二代器件。对比第一代和第二代器件,可以对未来高压电池系统的发展方向有一些深入的了解。LTC6803的主要目标之一是即使在最极端的噪声情况下,也能确保无差错通信。对所有指令和数据都进行包误差检测,以确保通信完整性。LTC6803系列还继续支持菊花链式和单独可寻址串行通信,同时LTC6803菊花链能承受超过20V的AC噪声和30V的快速开关尖峰,而不会产生误差(图3)。

 

  

  图3:第二代菊花链可抵抗强噪声。

1  2  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码: