侵权投诉
当前位置:

OFweek电子工程网

缓冲/存储技术

正文

SDRAM在任意波形发生器中的应用

导读: 任意波形发生器在雷达、通信领域中发挥着重要作用,但目前任意波形发生器大多使用静态存储器。这使得在任意波形发生器工作频率不断提高的情况下,波形的存储深度很难做得很大,从而不能精确地表达复杂信号。

  任意波形发生器在雷达、通信领域中发挥着重要作用,但目前任意波形发生器大多使用静态存储器。这使得在任意波形发生器工作频率不断提高的情况下,波形的存储深度很难做得很大,从而不能精确地表达复杂信号。本文介绍的基于动态存储器(SDRAM)的设计能有效解决这一问题,并详细讨论了一种简化SDRAM控制器的设计方法。

 

  1 任意波形发生器的总体方案

 

  工作频率、分辨率和存储长度是任意波形发生器最关键的三个性能参数。高的工作频率意味着高的输出信号频率和带宽,高的分辨率通常意味着高的信噪比,而存储长度决定了信号的精确程度。下面介绍的方案是笔者实际开发的一款任意波形发生器/卡(如图1所示),它的工作频率为300MHz,分辨率为14位,存储长度为8M字,现已得到了广泛地应用。

 

  

 

  该电路主要有两种工作状态:写数据状态和读数据状态。下面简单描述其工作过程。

  写数据状态:CPU根据所要设计的波形计算波形数据,并转换成14位的无符号数;打开总线开关,屏蔽FIFO操作,在SDRAM控制器的配合下,将波形数据通过接口电路交替写入SDRAM1和SDRAM2中,即SDRAM1中依次存放数据0,2,4,6...;SDRAM2中依次存放数据1,3,5,7...(如表1所示)。

 

  读数据状态:开启FIFO通道,关闭总线开关以断开SDRAM与CPU之间的数据连接;在SDRAM控制器的控制下,将SDRAM1/2中的数据同时(并行)读出;经过FIFO的缓冲得到连续的数据流,再经32位向16位的并串转换,将数据速率提升2倍后,供给DAC进行数-模转换,即可得到所编辑的信号。

  图1中用两片SDRAM并行工作,是因单片SDRAM不可能提供300MSPS的数据流。实际使用的器件是K4S641632C-TC60,工作时钟为166MHz。FIFO缓存SDRAM的输出数据,将突发数据流转换成连续数据流,使得在SDRAM处于刷新状态时,仍能维持正常的数据输出。实际使用的器件是两片并行工作的IDT72V263L6PF,写入时钟为166MHz,读出时钟为150MHz。并串转换的作用是提升数据的速率,在DAC器件内部完成,笔者采用具有良好动态性能的AD9755AST。CPU及控制接口是一个基于PC的ISA设备,可改进为PCI设备;时钟电路用来产生166MHz和150MHz的同步时钟。下面重点研究SDRAM控制器的设计,它是本系统的主要特色之一。

 

  

1  2  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码: