侵权投诉
当前位置:

OFweek电子工程网

功率设计

正文

技术讲座:用氧化镓能制造出比SiC性价比更高的功率元件(二)

导读: 使用β-Ga2O3的功率元件的研发现在才刚刚开始。虽然还存在众多课题,如4英寸以上大尺寸基板的制造技术、包括掺杂在内的外延生长技术,以及功率元件的工艺技术等,但目前已看到了解决的希望。

  上接本站报道:技术讲座:用氧化镓能制造出比SiC性价比更高的功率元件(一)

 

  基板成本也较低

  采用β-Ga2O3制作基板时,可使用“FZ(floating zone)法”及“EFG(edge-definedfilm-fed growth)法”等溶液生长法,这也是其特点之一(图4)。溶液生长法容易制备结晶缺陷少、口径大的单结晶,因此能够以低成本轻松量产基板。实际上是利用FZ法或EFG法制备单结晶,然后将结晶切成薄片,以此来制造基板。

  可利用溶液生长法

  图4:可利用溶液生长法

  β-Ga2O3可利用FZ法及EFG法等溶液生长法(a)。已试制完成口径为2英寸的基板(b)。

  用于制造蓝色LED芯片的蓝宝石基板就是利用EFG法制造的。蓝宝石基板不仅便宜而且结晶缺陷少,而且口径较大,达到6~8英寸。而SiC基板的基础即单结晶则需利用“升华法”制造,GaN基板的基础即单结晶需利用“HVPE(hydridevapor phase epitaxy)法”等气相法制造,因此在减少结晶缺陷和大口径化方面有很大难度。

  日本信息通信研究机构等的研究小组试制出的晶体管所使用的β-Ga2O3基板是利用FZ法制成的。外形尺寸也很小,只有6mm×4mm。

  但只要导入与蓝宝石基板相同的大型制造设备,就有望利用EFG法实现6英寸口径。估计将来能够以1万日元以下的成本实现1块口径6英寸的β-Ga2O3基板。

  制造时的耗电量也很小

  β-Ga2O3不仅可降低基板成本,而且还可降低制造时的耗电量及设备成本。比如,据计算,采用EFG法时,制造基板的单位面积耗电量只有升华法的约1/3。

  制造时耗电量小的原因在于生长速度快,以及结晶生长时温度略低等。β-Ga2O3结晶的生长速度达到SiC的10倍以上。此外,升华法必须在2000℃以上的高温下使结晶生长,而且EFG法只需要1725℃。

  不仅是基板制造,在基板上形成的处延层也能够以低于SiC及GaN的低温来形成。SiC及GaN的话一般要在1000℃以上的高温下使处延层生长。而β-Ga2O3基板在采用名为“mist CVD法”外延层生长方法时,生长温度可降至不到500℃。由于可降低基板制造和外延层生长时的温度,因此不仅是功率元件本身,连元件制造时的耗电量也可减少。

  另外,由于不需要像SiC及GaN那样的耐热性高的制造设备,因此还有助于降低设备成本。

  采用适合用来验证的简单构造

  为了挖掘β-Ga2O3的这些出色潜能,我们开始对该材料进行研发。第一项成果就是上篇文章中提到的MESFET。尽管是未形成保护膜的非常简单的构造,但耐压却高达257V,且泄漏电流只有5μA/mm(图5)。

  使用氧化镓试制晶体管

  图5:使用β-Ga2O3试制晶体管

  试制的β-Ga2O3的MESFET采用圆形电极图案(a)。虽然构造简单,但耐压却高达257V(b、c)

  MESFET在多种FET中构造最简单、最容易制造,适合用来验证工作性能。

  此次使用了通过掺杂Mg实施半绝缘化处理的单结晶β-Ga2O3基板。基板尺寸为6mm×4mm。晶面方向利用可将外延生长速度比其他面方向最大提10倍左右的(010)面。

  在该基板上利用分子束外延(MBE)法形成作为沟道层的n型Ga2O3层。厚度为300nm,为制成n型掺杂了Sn。

  进行二次离子质谱分析(SIMS)后表明,n型Ga2O3层的Sn浓度达到7×1017cm-3。

1  2  3  4  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号