当前位置:

OFweek电子工程网

嵌入式设计

正文

神经形态计算成AI新潮流 中国未来或可弯道超车

导读: 当AlphaGo打败韩国棋手李世石后,为了让其能更好地训练自己的系统,谷歌专为机器学习定制了“TPU”(Tensor Processing Unit)的ASIC芯片,专门针对TensorFlow进行优化,性能要优于英伟达的GPU。

  OFweek电子工程网讯 当AlphaGo打败韩国棋手李世石后,为了让其能更好地训练自己的系统,谷歌专为机器学习定制了“TPU”(Tensor Processing Unit)的ASIC芯片,专门针对TensorFlow进行优化,性能要优于英伟达的GPU。

  从谷歌对于芯片的重视程度来看,芯片的性能对于人工智能训练自身,进行机器学习的这一过程非常重要。在人工智能领域里,在CPU、GPU上运行深度神经网络计算已不是什么新鲜事。对于芯片公司来说,未来人工智能会越来越多地运用到各个智能设备上,对芯片的传感器、信息处理速度的要求越来越高。

  这样一来,科学家就需要采用专门的高效芯片来处理深度神经网络带来的海量数据。现在,利用神经形态计算,来模拟人类大脑处理信息的技术,正在成为人工智能领域的另一个技术方向。

  “人工智能深度神经网络的计算结构比较特殊,比如高度的并行化、时间域上的递归、中间的节点比较稀疏,所以如果能用专门的硬件来实现,会比在CPU上用软件实现要高效,一般来说会提高2-3个数量级。”地平线机器人公司余凯在接受媒体采访时说。

  神经形态计算可以模拟人类大脑处理信息

  神经形态计算成AI新潮流 中国未来或可弯道超车

  冯·诺依曼

  神经形态计算,也可以称为是大脑刺激计算,对于科学家来说这个领域一直是诱人的目标。人脑运转的高效性对于许多计算机来说,一直是无法企及的目标。除了能用更少的能耗来做更多的计算外,最为重要的是,神经形态计算摆脱了冯·诺依曼建立的计算结构,将模拟大脑处理、加工信息的过程集成到芯片上。这样一来,装了这种芯片的机器可以更快速、高效的学习数据。

  但是,目前计算机使用的芯片大多还是依据冯·诺依曼体系结构,依靠中央处理器和存储器来回处理信息,计算信息中的逻辑。这个方法非常适合处理数字,执行精确编写的程序,但不能用于处理图像或声音。以谷歌公司为例,谷歌训练人工智能识别视频中的猫时,需要16000个处理器来支撑。

  而神经形态计算,则希望通过模拟人类大脑处理信息的过程来达到高效的作用。它模拟了大脑数十亿神经元和突触,用以接受外来信息,如视觉、听觉,随后,接受到的信息、图片和声音又能改变神经元之间的联系。这整个过程就是机器学习的过程。在神经形态计算中,纳入了类似人类大脑启发的模型,也可以称为神经网络。

  IBM、高通布局神经形态计算芯片

  神经形态计算成AI新潮流 中国未来或可弯道超车

  神经形态计算最早由从事类脑研究的美国加州理工学院科学家Carver Mead,在上世纪80年代末提出。虽然在过去三十几年中,业界仍以传统的芯片为主,但国外已经有科技巨头在朝这个方向努力,甚至还联合了美国国防部先进研究项目局(DARPA)。

  例如,IBM的TrueNorth项目。该项目在2014年8月推出,IBM以神经形态工程学设计了CMOS芯片,包含4096个硬件核心,每个核心包含256个可编程的神经元芯片,拥有超过一百万的神经元。神经元上的突触能接受信号并影响彼此之间的联系。

1  2  下一页>  
责任编辑:Trista
免责声明: 本文仅代表作者个人观点,与 OFweek电子工程网 无关。其原创性以及文中陈述文字和内容未经本站证实, 对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅 作参考,并请自行核实相关内容。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码: