侵权投诉
当前位置:

OFweek电子工程网

网络/协议

正文

基于FPGA的实时数字化光纤传输系统

导读: 提出一种实时数字化光纤传输系统,该系统分为发送端和接收端。发送端用A/D转换器将输入的模拟信号数字化,再用FPGA对数据进行处理,并通过光纤传输。

  在电子设计领域中,通常要对多路宽带信号进行实时采集、处理和传输。传统的信号采集传输系统,采用专用集成电路控制A/D转换器等外围电路。由于专用集成电路时钟频率低、灵活性差、实时性低、传输速度慢、通用性差等缺点,难以满足对高速宽带信号采集和处理的要求。FPGA具有时钟频率高、速度快、采集实时性高、控制灵活等特点,与A/D转换器等外围电路结合,更适于高速数字信号处理。光纤传输与电气传输相比,具有传输频带宽、通信容量大、传输损耗低、抗电磁干扰性能强、抗辐射能力强、保密性好、重量轻等特点,在通信领域被广泛应用。

  文中提出基于FPGA和光纤传输的高速数字信号传输方案。以带有收发器的高性能FPGA为控制核心,控制外围A/D转换器和数据处理,通过光纤媒介进行数据传输,满足高速数字信号实时处理和传输的要求。

  1 系统总体设计方案

  光纤传输系统是以光波为信息载体、光纤为传输媒介,用光来传输信息的传输系统。光纤传输系统总体框图如图1所示,发送端主要由A/D采集、FPGA数据预处理、光纤发送模块组成;接收端主要由光纤接收模块、FPGA数据后处理、D/A转换模块组成。两者通过光纤进行通讯。

 

图1 光纤传输系统总体框图

  在发送端,先将外部输入的模拟信号进行预处理,再通过A/D转换器转化为数字信号送入FPGA进行处理。根据数据传输以及通信协议的要求,FPGA将预处理后的A/D数据进行编码、成帧。然后由FPGA内部的IP核进行并串转换,最后由光收发模块完成电光转换后,通过光纤发送出去。

  在接收端,光收发器模块将接收到的光信号转化为电信号,完成高速串行数据到并行数据的转换;然后,将转换后的并行数据送入FPG A,FPGA完成信号的解帧、解码,并进行后处理,该过程是发送端的逆过程。最后,经D/A转换器将接收到的数据恢复成模拟信号。

  2 硬件电路设计

  2.1 发送端硬件电路设计

  可编程逻辑器件FPGA是主控芯片,是系统的核心,设计选用Altera公司带有收发器的Arria GX系列芯片EP1AGX50CF48416.芯片内部集成了4个收发器通道,传输数据率从600 Mbit·s-1到3.152Gbit·s-1,收发器每通道在2.5 Gbit·s-1时消耗功率仅为125 mW;收发器可利用固定均衡设置来均衡串行通道,实现发送预加重和接收均衡;收发器支持串行环回、反向串行环回以及伪随机二进制序列(PRBS)产生器和校验器。专用收发器接口电路如图2所示。RREFB14接一个2kΩ/1%的参考电阻,其他未使用的收发管脚通过10kΩ电阻到电源或地。

 

图2 收发器接口电路

  光收发模块选用MXP-243S-X型光收发器,其可处理的数据率为1.25 Gbit·s-1,单电源3.3 V供电,差分LVPECL电平输入和输出,发射和接收部分相互独立。发射部分差分输入阻抗100 Ω,传输光信号波长1310nm.光发射器电路图如图3所示。发射的差分数据接到FPGA的专用收发器的发射管脚G4和G5上,控制引脚直接接到普通L/O管脚,并通过上拉电阻接到电源。

  2.2 接收端电路设计

  接收端FPGA也选用Altera公司的Arria GX系列芯片EP1AGX20CF48416.光收发模块仍选用MXP-243S-X型光收发器。电路连接只需将图3中的RD+、RD-端口直接接到光收发器TLK1501.

 

图3 光发射器电路图

 

1  2  3  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号