侵权投诉
订阅
纠错
加入自媒体

分析电池容量计的解决方案

2012-07-04 17:16
人在旅途20
关注

  3.5 控制电路

  该部分包含有预置电路、防溢出电路、计数方向控制电路。

  本样机为适用范围宽,在计数器的预置和控制电路上均增加了拨动开关,这样可以通过拨动开关设置计数部分初值和终值,可达到检测使用已知电池电容的目的,比较方便。

  同时为防计数器双向溢出,分别设置防溢出电路,使计数器计到零和满值时均不再计数,以防错误。

  通过对电流流向的比对,输出脉冲控制可逆计数器的计数,构成方向控制电路。

  3.6 显示

  显示有数字式、指针式两种方式。为保证直观的显示,同时尽可能沿用普通汽车的仪表,仍采用汽车上原有指示电池电压的电压表。而在电压表上设置一个开关,通过它来切换电压、容量的指示,这样较为方便。

  这需要将计数器的二进制数转化为电压。显然用D/A转换是可以的,但电路复杂程度上升,成本也有所提高。故为了简化电路我们仅借用D/A转换网络的思想,利用权电阻T形网络将4516的7位数值变换成模拟量输出,推动电压表指示,见图5。

 

图5显示电路原理图

  3.7 工作电源部分

  电池容量计不同于其它仪器的是它只能使用电池作为电源,而由于电池电压的变化及波动,直接使用显然是不合适的,为此必须由电池引出产生二次电源。

  首先霍尔器件需电源±12V,电路控制计数等部分也亦借用±12V,另外我们考虑到为了使容量指示更直观清晰,其最大电压范围应大些,同时也能充分利用其电压表有效指示。其电压表范围为40V,而电池电压最高为30V,故设定容量指示最大指示为28V,这就需要电源电压为30V.

  由于电池起动时有大电流放电,使电压波动十分厉害,约15~30V,为适应其变化,同时减小容量计自身功耗,提高效率,设计全部采用开关电源。

  首先+12V的获得是采用LM2575降压调整器,该芯片输入电压可达40V,固定振荡频率52kHz,电压、电流调整率较好,适应容量计的要求。

  -12V是利用+12V为输入,通过34063DC/DC变换器加以变换而成。这样损失了部分功率。我们原设计用M2575HV(输入电压60V)由电池电压直接引入,损失较小。故我们在设计中一直在寻找简洁的方法,最后经试验决定利用555振荡器升压并采用倍压整流的方法将12V提升至30V,效果极好,见图6。

  4产品的设计与计算

  4.1电压/频率关系的设定

  电压0~10V对应频率0~10kHz

 

图6 30V电源原理图

  电流0~1000A对应电压0~10V

  这几个值的选取,综合考虑了霍尔元件、放大器、F/V转换设计的最佳值及试验样机的需要。

  4.2 计数位数

  4020-14位4516两片共8位,加起来为22位,仅采用21位,其计数个数为:

  221=2.097152×106.

  对10kHz的计数时间

  T=(221×1/104)秒=3.49分。

  当10kHz对应1000A时,对45Ah电池来讲

  T=C/I=45/1000=0.045h=2.7分<3.49分,

  可见计时已够,满度计时安时数为

  (221×1/104)×1000/3600=58.25Ah.

  4.3 误差的计算

  前14级计数时间为△T=214,总计时为T=221,相对误差△T/T=214/221=0.78%.

  可见前14级误差极小,尚不足1%,且其仅在做减法时一次性出现,可以忽略。故采用一片4020代替三片4516是合理的。

  5 性能测试结果

  整机测试,条件为充放电流15A,电压(代表容量)指示满容量为28.002V,电池容量放尽后,电压指示为0V,指示容量与实际容量误差为3%,符合设计要求。

  6 结论

  在输出容量等于输入容量乘以损失系数的模式下,本文以电动车为使用对象,对输入取样、绝对值放大、压频转换、显示及工作电源各部分作了深入细致的阐述,进行了非常有益的探索,是目前计量电池容量的有效方法之一,适用于无记忆效应、性能相对稳定的电池。

<上一页  1  2  3  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号