谷歌“学习机器人”:像人类大脑一样去思考
让机器像新生儿的大脑一样进行自我学习和思考,这听上去不可思议的场景正在谷歌代号为“Google X”的秘密研发部转变为现实。
近日,Google科学家杰夫·狄恩(Jeff Dean)告诉记者,“Google X”实验室通过连接16000台计算机处理器,创建了一个机器学习的神经元网络系统。结果发现,这个系统自己学会了对猫的辨认。
去年夏天, Google X利用这一由16000多个处理器、10亿个内部节点组成的虚拟大脑,分析了1000万帧从Youtube上随机抓取的无标签视频剪辑图片,经过了10天时间的运转,“大脑”终于认识了什么是猫,并从接下来输入的2万张图片中准确找出了猫的照片。
和传统的机器视觉技术不同,它们是根据人类的指令进行学习,从而识别出某些特性。但在谷歌研究中,工程师们无需预先向机器输入某一概念,该系统就能在并未得到任何外在帮助的前提下“自学成才”。
“我们在训练的时候从未告诉过那是"猫",系统只是自行创建了猫这个概念。”杰夫·狄恩告诉记者,“大脑”是自己从未标记的YouTube静态图片中发现了猫是什么样子,这就是“自我学习”。
他向记者解释谷歌机器学习的理念:用众多的电脑模拟人脑中的“神经元”,形成一个“神经网络”。它不需要借助大批研究人员帮助电脑标明事物之间的差异,只要为算法提供海量的数据,“神经元”与“神经元”之间的关系将会发生变化,让数据自己说话,让组成“神经网络”的机器具备自动学习、识别数据的能力,在新的输入中找出与学到的概念对应的部分,达到识别的效果。
例如,在看过数百万张图片后,谷歌的虚拟大脑将自己构建出一张理想的猫的图片,利用不同层级的存储单元成功提炼出猫的基本特性。有科学家认为,这似乎是在控制论层面模拟了人类大脑视觉皮层的运作方式。
不过这一机器学习技术并不仅仅局限在图像方面。目前,Google正在将该虚拟人脑用于提升语音识别的准确率。杰夫·狄恩介绍,GoogleX团队曾和谷歌语音识别团队有过一次合作,5天内在800个机器上进行训练,就单字错误检出率而言,该系统已让Google的语音识别准确率提升了25%,这相当于研究语音识别20年的成果。

图片新闻
最新活动更多
-
即日-12.14立即下载>> 戴尔科技智能制造精准白皮书限时下载
-
即日-12.15立即下载>> 干货下载【是德科技白皮书】现成的信号分析仪测量应用软件为您节省宝贵时间
-
12月25日立即报名>> 【在线研讨会】智慧出行:亚马逊AWS赋能车联网行业
-
12月26日立即报名>> 2019深圳市生命健康行业年度发展论坛
-
即日-12.31立即下载>> NI院校科研技术白皮书限时下载
-
1月3日立即申请>> 2020长江商学院智造行业创新创业沙龙
-
9 华为推进鸿蒙系统
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论