侵权投诉
订阅
纠错
加入自媒体

神经网络:人机对话新篇

2013-02-20 08:56
PokerJoker
关注

  神经网络

  谷歌开发最新一代Android移动操作系统时,这家网络巨头对该系统解读语音指令的方式做出了一些重大调整。它安装了一套以“神经网络”为基础的语音识别系统,也就是一套模拟人脑的计算机学习系统。

  在很多用户看来,结果显而易见,其中就包括参与该项目的谷歌研究员文森特·范好克(Vincent Vanhoucke)。“只是对模型进行了调整就能实现这么好的效果,的确令人惊讶。”他说。

  范好克表示,新版Android系统(果冻豆)的语音错误率比上一代系统下降了约25%,提升了语音指令的用户满意度。他表示,用户更愿意在发出语音指令时使用更自然的语言。换句话说,他们的行为已经不那么像是在跟机器人对话了。“这确实改变了人们的行为方式。”他说。

  神经网络算法极大地改变了科技运行模式以及我们使用科技的模式,而语音指令只是其中的一个例子。虽然早在1980年代就已经成为最热门的研究领域之一,神经网络近年来却逐渐沉寂。不过,随着谷歌、微软和IBM争相探索这一技术的实用价值,该领域又再度炙手可热。

  语音分析

  当你与Android语音识别软件对话时,你的声谱会被分割,然后发送到谷歌庞大服务器网络中的8台电脑上,再利用范好克和他的团队开发的神经网络模型对数据进行处理。谷歌恰好非常擅长分割庞大的计算任务并快速处理数据。而为了研究具体方法,谷歌把任务分配给了杰夫·迪恩(Jeff Dean)和他的工程师团队,该团队最知名的贡献是重塑了现代数据中心的工作模式。

  神经网络为范好克这样的研究人员提供了一种方式,帮助其研究多种多样的形态——在果冻豆中,则是用户语音的声谱图——然后预测可能会呈现何种全新的形态。这种比喻源于生物学,机体内的神经元与其他细胞构成了一个网络,使之能以专门的方式处理信号。在果冻豆使用的神经网络中,谷歌可能会分析现实世界中的庞大数据,从而制作多种模型来描绘语言的工作方式——例如,其中一种可以处理英语发出的语音搜索请求。

  “人们很早以前就相信——部分源于你在大脑中看到的内容——要获得优秀的感知系统,就需要利用多个功能层。”多伦多大学计算机科学教授乔弗利·辛顿(Geoffrey Hinton)说,“但问题在于,如何高效地学习这些内容。”

  Android首先拍摄下语音指令的图像,之后由谷歌使用其神经网络模型分析用户所说的内容。

1  2  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号