侵权投诉
订阅
纠错
加入自媒体

JGD24 -5型固体式限时保护继电器的设计方案

2013-09-21 07:20
默菲
关注

  3.2延时滤波电路的设计

  限时保护继电器使用在汽车发动机上,其使用条件比较恶劣,发动机工作时会产生大量的干扰电压,干扰电压加到限时保护继电器的输入端可能会造成限时保护继电器的误动作。因此,在限时保护继电器的输入电路之后,设计一个延时滤波电路,延时滤波电路的原理图如图5所示。当干扰电压小于一定值时(200ms,干扰电压的持续时间较短,在1μs左右),限时保护继电器不工作,只有输入端持续供电超过200ms,才认为是输入端正常供电,限时保护继电器正常工作。

JGD24 -5 型固体式限时保护继电器的设计方案

  延时滤波电路的具体工作原理是:当输入端添加一个上升沿电压信号时,电流经过R6、R7给电容C充电。当电容C充电到一定的门限值V限时,反向器的“10”引脚输出高电平,限时保护继电器开始工作。充电时间(即延时时间)由下式计算:

JGD24 -5 型固体式限时保护继电器的设计方案

  当反相器的“13”引脚电压充电到3.8V时,反相器开始工作,其中V5为5V稳压管。

  因此,V(t)为3.8V,E为5V,代入上式:

JGD24 -5 型固体式限时保护继电器的设计方案

  3.3限时保护电路的设计

  为了避免起动机单次过长时间起动,起动机因过热损坏绝缘层而烧毁定转子,进而损坏起动机,在限时保护继电器的输入端设计出限时保护电路(如图6所示)。输入端加电,由于电容器C1两端的电压不能够突变,因此,反相器的“1”引脚为高电平,通过两级反向门,反相器的“4”脚为高电平,三极管V7接通,限时保护继电器开始工作。此时,通过C1、R5回路给电容C1充电,当反相器“1”脚电压低于3.8V时(即电容C1两端的电压为1.2V),反相器的“4”脚输出低电平信号,此时三极管V7关断,限时保护器停止工作。

  其中,充电时间的计算公式如下:

JGD24 -5 型固体式限时保护继电器的设计方案

JGD24 -5 型固体式限时保护继电器的设计方案

  3.4隔离电路的设计

  限时保护继电器的输入端控制电流很低,而输出电流很大,所以,它们之间必须进行电隔离,其隔离电路的原理图如图7所示。本电路中采用振荡电路的变压器耦合隔离。变压器耦合隔离主要由高频振荡电路、变压器耦合电路和整流电路组成。高频振荡电路采用双端推挽自激振荡输出,它比单端输出更能提高输入能量的转换效率。提高振荡频率,使其达到50kHz~200kHz,实现快速响应。

<上一页  1  2  3  4  5  6  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号