侵权投诉
订阅
纠错
加入自媒体

智能视频监控技术解析

2014-03-04 14:09
科技潮人
关注

  移动目标跟踪

  移动目标跟踪等价于在连续的图像帧间,创建基于位置、速度、形状、纹理、色彩等有关特征的对应匹配问题。常用的数学工具有卡尔曼滤波、Condensation算法及动态贝叶斯网络等。其中Kalman滤波是基于高斯分布的状态预测方法。不能有效地处理多峰模式的分布情况;Condensation算法是以因子抽样为基础的条件密度传播方法,结合可学习的动态模型,可完成鲁棒的运动跟踪。就跟踪对象而言,跟踪如手、脸、头、腿等身体部分与跟踪整个目标;就跟踪视角而言,有对应于单摄像机的单一视角、对应于多摄像机的多视角和全方位视角;当然还可以通过跟踪空间(二维或三维)、跟踪环境(室内或户外)、跟踪人数(单人、多人、人群)、摄像机状态(运动或固定)等方面进行分类。从跟踪方法的不同讨论跟踪算法。

  1、基于模型的跟踪

  传统的人体表达方法有如下三种:①线图法:人运动的实质是骨骼的运动,因此该表达方法将身体的各个部分以直线来近似。②二维轮廓(2DContour):该人体表达方法的使用直接与人体在图像中的投影有关,如Ju等提出的纸板人模型,它将人的肢体用一组连接的平面区域块所表达,该区域块的参数化运动受关节运动(ArticulatedMovement)的约束,该模型被用于关节运动图像的分析。③立体模型(VolumetricModel):它是利用广义锥台、椭圆柱、球等三维模型来描述人体的结构细节,因此要求更多的计算参数和匹配过程中更大的计算量。

  例如Rohr使用14个椭圆柱体模型来表达人体结构,坐标系统的原点被定位在躯干的中心,目的是想利用该模型来产生人的行走的三维描述;Wachter与Nagel利用椭圆锥台建立三维人体模型,通过在连续的图像帧问匹配三维人体模型的投影来获得人运动的定量描述,其中,它利用了迭代的扩展卡尔曼滤波方法,结合边缘、区域信息及身体解析约束确定的身体关节运动的自由度,实现单目图像序列中人的跟踪。

  2、基于区域的跟踪

  基于区域的跟踪方法目前已有较多的应用,例如Wren等利用小区域特征进行室内单人的跟踪,文中将人体看作由头、躯干、四肢等身体部分所对应的小区域块所组成,利用高斯分布建立人体和场景的模型,属于人体的像素被规划于不同的身体部分。通过跟踪各个小区域块来完成整个人的跟踪。基于区域跟踪的难点是处理运动目标的影子和遮挡,这或许可利用彩色信息以及阴影区域缺乏纹理的性质来加以解决,如McKenna等首先利用色彩和梯度信息建立自适应的背景模型,并且利用背景减除方法提取运动区域,有效地消除了影子的影响;然后,跟踪过程在区域、目标、目标群三个抽象级别上执行,区域可以合并和分离,而人是由许多身体部分区域在满足几何约束的条件下组成的,同时人群又是由单个的人组成的,因此利用区域跟踪器并结合人的表面颜色模型,在遮挡情况下也能够较好地完成多人的跟踪。

<上一页  1  2  3  4  5  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号