侵权投诉
订阅
纠错
加入自媒体

未来电子信息产业的主宰 起底第三代半导体产业发展现状

2017-07-27 11:05
吃瓜天狼
关注

材料、信息、能源构筑的当代文明社会,缺一不可。半导体不仅具有极其丰富的物理内涵,而且其性能可以置于不断发展的精密工艺控制之下,可谓是“最有料”的材料。在不久的将来,以碳化硅(SiC)、氮化镓(GaN)为代表的第三代半导体材料的应用,无论是在军用领域还是在民用市场,都是世界各国争夺的战略阵地。

半导体材料的发展历程

导电能力介于导体与绝缘体之间的物质称为半导体,半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电路的电子材料。

目前的半导体材料已经发展到第三代。第一代半导体材料主要以硅(Si)、锗(Ge)为主,20世纪50年代,Ge在半导体中占主导地位,主要应用于低压、低频、中功率晶体管以及光电探测器中,但是Ge半导体器件的耐高温和抗辐射性能较差,到60年代后期逐渐被Si器件取代。用Si材料制造的半导体器件,耐高温和抗辐射性能较好。Si储量极其丰富,提纯与结晶方便,二氧化硅(SiO2)薄膜的纯度很高,绝缘性能很好,这使器件的稳定性与可靠性大为提高,因此Si已经成为应用最广的一种半导体材料。目前95%以上的半导体器件和99%以上的集成电路都是由Si材料制作。在21世纪,它的主导和核心地位仍不会动摇。但是Si材料的物理性质限制了其在光电子和高频高功率器件上的应用。

20世纪90年代以来,随着移动通信的飞速发展、以光纤通信为基础的信息高速公路和互联网的兴起,以砷化镓(GaAs)、磷化铟(InP)为代表的第二代半导体材料开始崭露头脚。GaAs、InP等材料适用于制作高速、高频、大功率以及发光电子器件,是制作高性能微波、毫米波器件及发光器件的优良材料,广泛应用于卫星通讯、移动通讯、光通信、GPS导航等领域。但是GaAs、InP材料资源稀缺,价格昂贵,并且还有毒性,能污染环境,InP甚至被认为是可疑致癌物质,这些缺点使得第二代半导体材料的应用具有很大的局限性。

第三代半导体材料主要包括SiC、GaN、金刚石等,因其禁带宽度(Eg)大于或等于2.3电子伏特(eV),又被称为宽禁带半导体材料。和第一代、第二代半导体材料相比,第三代半导体材料具有高热导率、高击穿场强、高饱和电子漂移速率和高键合能等优点,可以满足现代电子技术对高温、高功率、高压、高频以及抗辐射等恶劣条件的新要求,是半导体材料领域最有前景的材料,在国防、航空、航天、石油勘探、光存储等领域有着重要应用前景,在宽带通讯、太阳能、汽车制造、半导体照明、智能电网等众多战略行业可以降低50%以上的能量损失,最高可以使装备体积减小75%以上,对人类科技的发展具有里程碑的意义。

第三代半导体材料

碳化硅单晶材料

在宽禁带半导体材料领域就技术成熟度而言,碳化硅是这族材料中最高的,是宽禁带半导体的核心。SiC材料是IV-IV族半导体化合物,具有宽禁带(Eg:3.2eV)、高击穿电场(4×106V/cm)、高热导率(4.9W/cm.k)等特点。从结构上讲,SiC材料属硅碳原子对密排结构,既可以看成硅原子密排,碳原子占其四面体空位;又可看成碳原子密排,硅占碳的四面体空位。对于碳化硅密排结构,由单向密排方式的不同产生各种不同的晶型,业已发现约200种。目前最常见应用最广泛的是4H和6H晶型。4H-SiC特别适用于微电子领域,用于制备高频、高温、大功率器件;6H-SiC特别适用于光电子领域,实现全彩显示。

随着SiC技术的发展,其电子器件和电路将为系统解决上述挑战奠定坚实基础。因此SiC材料的发展将直接影响宽禁带技术的发展。

SiC器件和电路具有超强的性能和广阔的应用前景,因此一直受业界高度重视,基本形成了美国、欧洲、日本三足鼎立的局面。目前,国际上实现碳化硅单晶抛光片商品化的公司主要有美国的Cree公司、Bandgap公司、DowDcorning公司、II-VI公司、Instrinsic公司;日本的Nippon公司、Sixon公司;芬兰的Okmetic公司;德国的SiCrystal公司,等。其中Cree公司和SiCrystal公司的市场占有率超过85%。在所有的碳化硅制备厂商中以美国Cree公司最强,其碳化硅单晶材料的技术水平可代表了国际水平,专家预测在未来的几年里Cree公司还将在碳化硅衬底市场上独占鳌头。

1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号