侵权投诉
订阅
纠错
加入自媒体

量子摩尔定律问世是怎么回事?量子摩尔定律问世具体什么情况?

2019-03-10 13:04
科技最前线
关注

量子摩尔定律 :为了实现量子优势,量子体积需要每年至少翻一番

为了在本世纪20年代实现量子优势,需要每年至少将“量子体积”增加一倍。

IBM的五量子比特设备Teumife的量子体积是2017年首次通过IBM Q Experience量子云服务提供的,目前的IBM Q 20-量子位的高端设备的量子体积为8。最新结果表明,IBM Q System One性能已经超过16量子体积。自2017年以来,IBM Q团队每年都实现了量子体积的倍增。

下面是一张量子系统开发路线图,以量子体积为衡量标准,量子系统计算力每年增长一倍。

blob.png

有趣的是,其实可以将上图与Gordon Moore在1965年4月19日提出这张著名的“摩尔定律”图表进行比较:

blob.png

为了实现0.01%的误差率,需要将相干时间提高到1-5毫秒,这是一个漫长的未来之路,在量子系统中实现这一目标需要克服很多激动人心的挑战。

在制定系统路线图的同时,需要同时研究元器件的基本物理特性,并测量了单个超导传输量子比特T1弛豫时间长达0.5毫秒(500微秒,质量因数为1500万),研究结果表明这些器件不存在基本材料上的限制问题。

blob.png

虽然“量子体积”可用于表征设备性能,但业界也可以使用其他指标,例如测量设备上的纠缠量子位的方式,从中提取有关系统性能的更多信息。

对于多量子位纠缠,一个简单的衡量标准是n-qubit Greenberger-Horne-Zeilinger(GHZ)状态的断层摄影(可完全描述未知量子态的相同集合的过程),比如4量子位状态。

首先准备GHZ状态,并通过在不同基础上的各个量子位的投影,重建我们创建的状态。这里的量度指标是可实现的实验状态相对于目标状态的保真度。

状态层析成像对测量误差很敏感,因此如果不具备去除这些误差影响的技术,我们重建的4量子位 GHZ状态的保真度为0.66,可以绘制出如下的密度矩阵:

blob.png

不过,可以通过额外校准测量来确定测量误差的倒数,并对层析成像数据进行测量校正,从而降低这些误差。同样的数据经过校正处理后,保真度提升至0.98。请注意,此值不包括误差线,误差线将包含由于状态准备和测量误差引起的统计噪音和系统噪音。

Qiskit Ignis是一种理解和降低量子电路和器件噪音的框架,也是IBM的开源量子开发套件Qiskit的一部分。Qiskit Ignis中包括测量误差降噪。

降噪后的4比特GHZ状态层析成像,保真度为0.98

blob.png

我们还对IBM Q System One上的真正纠缠状态进行了初步测量,共有多达18个量子比特纠缠。

这些初步结果,再加上量子体积和降低测量误差技术的改进,以及新的快速高保真量子位测量的成果,将在2019年3月美国物理学会的会议上公布。

量子计算的噪声中间量子(NISQ)时代的到来是一个激动人心的时刻——从硬件,软件到物理学的突破,再到新的量度标准的诞生。要在实用系统上继续改进“量子体积”量度标准,仍需要进一步的研究和应用。IBM计划在纽约Poughkeepsie开设新的量子计算中心,在2019年下半年制造具有相当性能水平的量子计算系统。

1965年,戈登·摩尔曾断言:“集成电子技术的未来是电子产品本身的未来。”而我们现在相信,量子计算的未来将成为计算机本身的未来。

<上一页  1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号