侵权投诉
订阅
纠错
加入自媒体

2019年AI芯片产业深度研究报告

2019-07-02 09:28
来源: 芯智讯

4、国内外 AI 芯片市场需求将保持较快增长势头,云端、边缘均具备潜力

近年来,伴随着全球 AI 产业的快速增长,AI 芯片需求大幅上升。按照 Gartner 最新数据,2018 年全球 AI 芯片市场规模达到 42.7 亿美元。未来几年,全球各大芯片企业、互联网巨头、初创企业都将在该市场上进行角逐,预计到 2023 年全球市场规模将达到 323 亿美元。未来五年(2019-2023年)平均增速约为 50%,其中数据中心、个人终端、物联网芯片均是增长的重点。

image.png

相比之下中金公司研究部公布的一组数据则更为乐观,该数据显示,2017年,整体AI芯片市场规模达到62.7亿美元,其中云端训练AI芯片20.2亿美元,云端推理芯片3.4亿美元,边缘计算AI芯片39.1亿美元;到2022年,整体AI芯片市场规模将会达到596.2亿美元,CAGR57%,其中云端训练AI芯片172.1亿美元,CAGR 53.5%,云端推断芯片71.9亿美元,CAGR 84.1%,边缘计算AI芯片352.2亿美元,CAGR 55.2%。

image.png

国内人工智能芯片行业发展仍处在起步阶段。长期以来,我国在 CPU、GPU 和 DSP 设计上一直处于追赶状态,绝大多数芯片依靠国外的 IP 核进行设计,自主创新能力不足。但我们也看到,国内人工智能产业的快速发展,也为国内芯片产业实现换道超车创造了机会。由于国内外在芯片生态上并未形成垄断,国内芯片设计厂商尤其是专用芯片设计厂商,同国外竞争对手还处在同一起跑线上。

目前国内人工智能芯片市场呈现出百花齐放的态势。AI 芯片的应用领域广泛分布在金融证券、商品推荐、安防、消费机器人、智能驾驶、智能家居等众多领域,催生了大量的人工智能创业企业,如地平线、深鉴科技、寒武纪、云知声、云天励飞等。我们认为,未来随着国内人工智能市场的快速发展,生态建设的完善,国内 AI 芯片企业将有着更大的发展空间,未来 5 年的市场规模增速将超过全球平均水平。

二、 AI 芯片主要应用场景

1、数据中心(云端)

数据中心是 AI 训练芯片应用的最主要场景,主要涉及芯片是 GPU 和专用芯片(ASIC)。如前所述,GPU 在云端训练过程中得到广泛应用。目前,全球主流的硬件平台都在使用英伟达的 GPU 进行加速,AMD 也在积极参与。亚马逊网络服务 AWS EC2、Google Cloud Engine(GCE)、IBM Softlayer、Hetzner、Paperspace 、LeaderGPU、阿里云、平安云等计算平台都使用了英伟达的 GPU 产品提供深度学习算法训练服务。

image.png

在云端推理市场上,由于芯片更加贴近应用,市场更多关注的是响应时间,需求也更加的细分。除了主流的 CPU GPU 异构之外,还可通过 CPU FPGA/ASIC 进行异构。目前英伟达在该市场依然保持着领军位置。主要原因是:GPU强大的并行计算能力(相比CPU)、通用性以及成熟的开发环境。但是GPU也并非是完美无缺的解决方案,明显的缺点如:高能耗以及高昂的价格。

相比之下,FPGA的低延迟、低功耗、可编程性优势(适用于传感器数据预处理工作以及小型开发试错升级迭代阶段)和 ASIC 的特定优化和效能优势(适用于在确定性执行模型)也正在凸显,赛灵思、谷歌、Wave Computing、Groq、寒武纪、比特大陆等企业市场空间也在扩大。

image.png

来自IDC和Gartner的数据也显示,全球AI服务器及AI芯片市场规模自2016年到2020年都将保持持续的高速增长,而与此同时全球云端AI芯片当中GPU的市场份额呈现出持续下滑的趋势,预计到2022年云端训练GPU占比将降至60%,云端推理GPU占比更是只有30%。

2、移动终端

智能手机在经历了近10年的高速增长后,市场已趋于饱和,出货增速趋近于0,行业逐渐转为存量市场。近年来,一批国产厂商在产品质量上逐渐达到了第一梯队的水平,进一步加剧了头部市场的竞争。为实现差异化竞争,各厂商加大手机AI功能的开发,通过在手机SoC芯片中加入AI引擎,调配现有计算单元来实现AI计算,或者直接加入AI协处理器,实现在低功耗情况下AI功能的高效运行。

随着未来竞争进一步加剧,以及产量上升所带来的成本下降,预计AI芯片将会进一步渗透进入到中等机型市场,市场空间广阔。移动端AI芯片市场不止于智能手机,潜在市场还包括:智能手环/手表、VR/AR眼镜等市场。AI芯片在图像及语音方面的能力可能会带来未来人机交互方式的改变并进一步提升显示屏、摄像头的能力,有可能在未来改变移动端产品。

以往通过云数据中心做手机端AI推理任务面临网络带宽延迟瓶颈的问题,严重影响用户使用体验,而CPU适合逻辑运算,但并不适合AI并行运算任务,目前市场上流行在SoC中增加协处理器或专用加速单元来执行AI任务。以智能手机为代表的移动互联网终端是一个多传感器融合的综合数据处理平台,AI芯片需要具备通用性,能够处理多类型任务能力。由于移动终端依靠电池驱动,而受制于电池仓大小和电池能量密度限制,芯片设计在追求算力的同时对功耗有着严格的限制,可以开发专用的ASIC芯片或者是使用功耗较低的DSP作为AI处理单元。

image.png

目前手机芯片市场存在以下情况:1)、AI应用场景、功能有限;2)、AI芯片厂商一般向SoC厂提供IP并收取授权费,需要AI-IP与整块SoC进行良好的匹配,而创业公司缺少与SoC厂商合作经验;3)、传统手机SoC厂商和IP厂商都在开发自己的AI加速器,传统IP巨头可以采取IP打包销售的方式推广其AI-IP产品。相比之下新进厂商在成本、功能、产品线、匹配度等都不占优的情况下很难在该领域存活。新进厂商应加强其软件方面优势,并加深与手机厂商合作共同进行手机AI功能开发。

3、自动驾驶

自动驾驶汽车装备了大量的传感器、摄像头、雷达、激光雷达等车辆自主运行需要的部件,每秒都会产生大量的数据,对芯片算力有很高的要求, 但受限于时延及可靠性,有关车辆控制的计算不能再依托云端进行,高算力、快速响应的车辆端人工智能推理芯片必不可少。

image.png

目前,自动驾驶所使用的芯片主要基于 GPU、FPGA 和 ASIC 三条技术路线。但由于自动驾驶算法仍在快速更迭和进化,因此大多自动驾驶芯片使用 GPU FPGA 的解决方案。未来算法稳定后,ASIC将成为主流。

<上一页  1  2  3  4  5  6  下一页>  
声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号