侵权投诉
订阅
纠错
加入自媒体

2019年AI芯片产业深度研究报告

2019-07-02 09:28
来源: 芯智讯

6、机器人

机器人是人工智能行业最早的落地形态,也是现在和将来重要的应用方向。机器人主要包括两类——制造环境下的工业机器人和非制造环境下的服务机器人。工业机器人主要是面向工业领域的多关节机械手或多自由度机器人。服务机器人则是除工业机器人之外的、用于非制造业并服务于人类的各种先进机器人。

随着云物移大智等信息及智能化技术的发展,机器人在某些领域的工作效率高于人类,并在工业和服务场景中得到了大量应用。据国际机器人联盟统计,2017 年,全球工业机器人产量达到 38.1 万台,同比增长 30%,预计 2018-2021 年全球工业机器人产量将保持 10%以上增速增长,2021 年产量预计将达到 63.0 万台。中国是全球最大的工业机器人生产国,2017 年产量达到 13.79 万台,同比大幅增长 60%。服务机器人主要用于物流、防务、公共服务、医疗等领域,虽然规模不大,但是增长迅速。2017 年全球产量为 10.95 万台,同比大幅增长 85%。预计 2018 年全球专业服务机器人产量将达到 16.53 万台,同比增长 32%,2019-2021 年平均增速将保持在 21%左右。

image.png

image.png

机器人尤其是国内产业规模的快速扩大,将大幅带动国内机器人相关智能芯片产业的发展。机器人由控制、传感、驱动和电源四大装置构成,其中控制装置是机器人的“大脑”,核心是 AI 芯片。机器人芯片需要具备强大的数据计算、自主判断思考和执行能力,国外厂商如高通、英特尔、英伟达都在积极部署该领域,国内企业目前处于追赶状态,相关企业包括瑞芯微、珠海全志、炬力等。

image.png

三、AI芯片行业产业链及商业模式

半导体行业产业链长,具有资本和技术壁垒双高的行业特点

半导体行业产业链从上游到下游大体可分为:设计软件(EDA)、设备、材料(晶圆及耗材)、IC设计、代工、封装等。

Fabless与IDM厂商负责芯片设计工作,其中IDM厂商是指集成了设计、制造、封装、销售等全流程的厂商,一般是一些科技巨头公司,Fabless厂商相比IDM规模更小,一般只负责芯片设计工作。

分工模式(Fabless-Foundry)的出现主要是由于芯片制程工艺的不断发展,工艺研发费用及产线投资升级费用大幅上升导致一般芯片厂商难以覆盖成本,而 Foundry厂商则是统一对Fabless和IDM的委外订单进行流片,形成规模化生产优势,保证盈利的同时不断投资研发新的制程工艺,是摩尔定律的主要推动者。当前在半导体产业链中,我国在上游软件、设备、高端原材料以及代工制造与全球一线厂商差距较大,而在封装环节拥有长电、华天、通富微等行业前十企业,今年来在IC设计领域也逐渐涌现了以海思为代表的一批优秀企业。

image.png

半导体行业商业模式主要可分为:IP授权与流片生产模式

行业主要存在两种商业模式IP授权和流片模式。其中在IP授权模式中,IP设计公司将自己设计的芯片功能单元,如:CPU、GPU、DSP、NPU等,授权给其他的IC设计公司,如华为海思麒麟970、980芯片获得了寒武纪NPU的IP授权。被授权方将会向授权方支付一笔授权费来获得IP,并在最终芯片产品销售中,以芯片最终售价的1%~3%向授权方支付版税。授权费用实现IP开发成本的覆盖,而版税作为IP设计公司的盈利。但正如手机芯片市场,优质的IP资源往往集中在科技巨头手中,拥有单一或少量IP的创业公司往往因为自身IP竞争力不足、或是难以提供具有综合竞争力的完整解决方案而最终落得被收购或退出市场的境地。

流片生产模式虽然前期投入较大,但一款成功的产品将会使公司获得丰厚的利润,一般芯片产品定价采取8:20原则,即硬件成本:最终产品售价=8:20。该比率可能会随厂商对市场话语权不同而上下波动,因此一款成功的芯片销售毛利应在60%以上。但公司是否能够最终实现盈利,还需要在毛利中进一步扣除前期研发费用。

image.png

芯片设计需要厂商承担昂贵的EDA费用及高昂的人力成本

芯片整体设计制造流程大体包括:1)IC设计公司进行芯片架构设计,2)将设计完成的芯片“图纸”文件交由Foundry厂商进行流片,3)裸片将会交由OSAT厂商进行封装,4)产品销售。研发费用主要包括:研发团队人力成本、EDA软件及IP授权费用及其他场地租金、水电费用等。

其中,人力成本占研发成本主要部分,项目开发效率与资深工程师数量正相关,国内资深芯片设计工程师年薪一般在50~100万元之间。EDA工具是芯片设计工具,是发展超大型集成电路的基石,EDA工具可有效提升产品良率。目前,该领域被海外厂商高度垄断,CR3大于70%。EDA厂商主要是通过向IC设计公司进行软件授权获取盈利,根据调研,20人的研发团队设计一款芯片所需要的EDA工具采购费用在100万美元/年左右(包括EDA和LPDDR等IP购买成本)。英伟达开发Xavier,动用了2000个工程师,开发费用共计20以美金,Xlinix ACAP动用了1500个工程师,开发费用总共10亿美金。

image.png

芯片设计技术积累 市场洞察力=芯片产品市场推广成功与否

在IP授权和流片生产两大类商业模式中,IP授权由于不涉及芯片制造,仅需要考虑研发费用,资金占用相对小、风险较低。流片除前期的研发投入以外,还需要向代工厂支付巨额的代工费用,对资金占用极大,需要芯片销售达到一定量级才能分摊掉前期巨额投入实现盈利,若期间出现流片失败(即流片未达设计期望性能指标)或者市场推广失利等情况,芯片设计厂商需要承担前期巨额的研发和制造投入、费用损失。芯片单位硬件成本主要包含掩膜、封装、测试和晶圆成本,并受到制程工艺、产量、芯片面积等多因素的影响。

我们简要测算16nm制程工艺下,不同产量不同面积的芯片单位成本,可以看出芯片单位硬件成本随芯片面积、产量上升逐渐下降。因此,一款芯片能否获得广大的市场认可,并拥有较长的产品生命周期,实现芯片产品的规模销售和生产显著决定了企业的盈亏情况。

image.png

四、国内外AI芯片企业融资概况

从2012年开始,英伟达将其GPU产品应用于AI并行运算应用中,人们意识到了AI芯片的巨大潜力,传统半导体行业巨头、科技巨头和众多创业团队纷纷加入到该领域的产品研发中来。国内创业公司多成立于15年以后,从2017年开始大量的AI计算芯片产品陆续发布,产品逐步开始实现落地。

传统的半导体巨头和科技巨头也在布局AI芯片领域,除自主研发以外,基于资金优势通过对外投资收购优质资产及创业团队等手段加速自身的AI芯片业务发展,典型代表如Intel,大手笔收购了包括Altera、Nervana、Movidius以及Mobileye在内的多家AI芯片企业,阿里巴巴也通过先后投资、收购布局AI芯片的开发。

image.png

国内大量的AI芯片创业公司都是在2015-2017年成立,2018年新增企业数量减少。资本方面,受到宏观经济影响虽然行业内投融资事件相比2017年同比增长了32%,但行业整体投融资金额骤减,但头部企业在2018年依然持续获得投资人青睐,多家企业创造了估值新高。

image.png

五、国内外 AI 芯片厂商概览

1、整体排名

近年来,各类势力均在发力 AI 芯片,参与者包括传统芯片设计、IT 厂商、技术公司、互联网以及初创企业等,产品覆盖了 CPU、GPU、FPGA 、ASIC 等。在市场调研机构 Compass Intelligence 2018年发布的 AI Chipset Index TOP24 榜单中,前十依然是欧美韩日企业,国内芯片企业如华为海思、联发科、Imagination(2017 年被中国资本收购)、寒武纪、地平线机器人等企业进入该榜单,其中华为海思排 12 位,寒武纪排 23 位,地平线机器人排 24 位。

image.png

2、芯片企业

芯片设计企业依然是当前 AI 芯片市场的主要力量,包括英伟达、英特尔、AMD、高通、三星、恩智浦、博通、华为海思、联发科、Marvell(美满)、赛灵思等,另外,还包括不直接参与芯片设计,只做芯片 IP 授权的 ARM 公司。其中,英伟达、英特尔竞争力最为强劲。

<上一页  1  2  3  4  5  6  下一页>  余下全文
声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号