EdgeBoard多并发高性能通用CNN架构剖析
3.软核算力的弹性配置
Edgeboard的CNN软核除了公开发布的标准版本外,还可以由用户根据自身模型需求和FPGA芯片选型,进行CNN卷积计算单元算力的定制化配置。配置算力的两个关键指标包括Window维度并行度和Kernel维度并行度,具体含义可参考2.3章节,此处不再赘述。
我们以卷积计算加速单元的核心矩阵乘加运算消耗DSP硬核(Hard core)的个数作为CNN软核核心算力的考察指标。当然,这并不包括卷积前处理、后处理模块,以及其他算子加速单元或者用户自定义功能模块所消耗的DSP数量,因此这并不是整个解决方案在FPGA芯片内部的DSP资源消耗。我们的设计可以支持Window并行度1-8的任意整数,支持Kernel并行度包括4,8,16。具体的卷积双维度配置组合所对应的核心DSP消耗可以参见下表。
目前,EdgeBoard公开版针对卷积计算加速单元Window维度和Kernel维度的并行度配置,以及核心矩阵乘加运算的DSP硬核消耗可参见下表。
EdgeBoard的CNN软核以其灵活的算力搭配组合以及算子可定制化的特点,既可以根据具体模型的算子组合和所占比例,将一定成本和资源条件内的芯片性能发挥到极致,还可以在满足场景所要求性能的前提下减少不必要的功耗支出,此外还允许开发者缩减软核尺寸并将芯片资源应用于自定义功能的IP中,极大地增强了EdgeBoard人工智能多场景覆盖的能力。
图片新闻
技术文库
最新活动更多
-
即日-12.26立即报名>>> 【在线会议】村田用于AR/VR设计开发解决方案
-
1月8日火热报名中>> Allegro助力汽车电气化和底盘解决方案优化在线研讨会
-
1月9日立即预约>>> 【直播】ADI电能计量方案:新一代直流表、EV充电器和S级电能表
-
即日-1.14火热报名中>> OFweek2025中国智造CIO在线峰会
-
即日-1.16立即报名>>> 【在线会议】ImSym 开启全流程成像仿真时代
-
即日-1.20限时下载>>> 爱德克(IDEC)设备及工业现场安全解决方案
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论