侵权投诉
订阅
纠错
加入自媒体

从小鹏召回到特斯拉故障,汽车芯片可靠性何以保证?

如何量化和发现致命缺陷

汽车中有大量的变量,在先进节点设计芯片时也是如此,包括工艺变化到微小缺陷。关键是要理解并量化这些变量,然后利用积累的所有知识,能够预测缺陷并发现致命缺陷。

从芯片的生命周期中收集数据并将其插入反馈回路是可靠性和功能安全性的关键。对于功能安全,在测量老化时,可以在某个时间点得出结论,器件已经老化到不再安全的程度。然后可以说这辆车需要在故障发生之前进行预防性维护。

在过去,可靠性通常被认为是制造过程的一部分。芯片要在烤箱中烘烤一段时间,或经过仔细监测的振动,以确定器件何时会出现故障。虽然在制造之前可以模拟不同的场景,但芯片仍然可能会失效,但缺陷率会降低,这取决于对各种工艺的控制有多严格,以及可以增加多少裕度来提供某种类型的失效接管。这在今天的ECC(错误检查和纠正)内存中是很常用的方法。

不过,传统汽车时代的一些假设正在被打破,老化就是其中之一。当汽车停驻并关闭引擎时,汽车电子设备不会停止老化。即使是在车库里,自动驾驶汽车也永远不会“熄火”。它可能仍然与手机通信、更新软件,在后台做自我检查。

芯片能维持的使用寿命因终端市场、器件是否用于安全或任务关键型应用,甚至是否可以轻松更换或远程修复而大相径庭。

不同行业芯片的预期寿命估计

加速老化测试是模拟产品在现实使用条件下各种因素对产品产生老化的加强实验过程。一个加速因素是温度,另一个因素是电压。如果一个器件在12V(汽车电池正常电压)下工作,那么在24年的时候,这个器件已难以工作。不同的参数,如湿度、电压、温度、机械冲击,这些都是加速系数。老化可以模拟器件寿命。

现在的问题是,如何加速它的寿命?当然,需要模拟的是器件在车里大约20年的寿命。如果希望在一个月内看到一个故障,那么就要使用许多组件;如果想看到20年内的一次故障,可以添加更多的组件,然后就可以得到更多的运行时间。如果想模拟一台设备在20年内出现故障,可以拿1000台设备运行一个小时,即1000工作小时数。使用更多组件就可以更快地测试寿命,因为真正想要的是演示运行小时数内有多少故障。这就是所谓的FIT(失效率),在109小时内出现一次故障即为1 FIT。

值得一提的是,不同汽车级别在时间质量指标上有不同的失效率。消费类级别的质量水平为100 FIT,而安全关键应用(如汽车中控制电池充电的电子器件)可能是0.1 FIT。所以必须根据器件的分类来模拟生存期。为了计算不同的加速系数所产生的影响,可以使用阿伦尼乌斯(Arrhenius)方程。

功能安全与可靠性

毋庸讳言,汽车电子的可靠性和功能安全性之间关系紧密。功能安全的重点是避免伤害,而可靠性是说汽车能否工作,而不需要修理。但是随着自动驾驶的增加,两者会有很多重叠。

如果石头击中传感器会发生什么?除了自身的可靠性之外,我们还必须考虑自动驾驶汽车的功能安全性,其中一些标准是ISO 26262推动的。这是在设计阶段很多工作的核心。只要芯片安全地失效,芯片失效也没关系。这是功能安全的重点。在一辆自动驾驶汽车里,无论是芯片故障还是雷击,不撞车都是至关重要的。当然,可靠性也很重要。最好芯片不出故障,这既是功能安全的需要,也是质量的需要。

失效对于汽车行业至关重要,而失效的机会很多。要想以可控的方式重复这一过程,并在生产线内部、工厂之间或不同供应商之间找到问题的根本原因,对可靠性是一个重大挑战。无论你在做什么,都必须是可重复的,而且你必须能够信任它。这使得这些公司的运营方式发生了重大转变。

汽车电子的可靠性要求是由汽车电子委员会(AEC)定义和分级的,AEC Q-100/200是汽车IC应力测试的标准。热、湿度和振动都是可能破坏芯片的风险因素,但材料、设计和制造工艺也会使芯片或多或少地受到风险因素的影响。这会变得复杂,细节也很重要。

在整个开发和鉴定过程中,需要明智地使用热机械建模。例如,聚合物材料在长时间高温下会发生永久性变化。取决于环境,这可能包括材料氧化以及导致脆化的机械性能变化。湿度也会导致片芯钝化层和基板焊接掩模界面的附着力丧失。

冗余需要适度

冗余通常是实现航空可靠性的方法,但这会增加开支和重量。但对于汽车来说,冗余需要局限于车辆内的特定系统,因为汽车没有那种奢侈,主机厂只是想省下每一分钱。

在汽车里,冗余是需要平衡的。随着SoC应用的扩大,冗余有多种形式。这些技术是在更高层次上复制一些CPU或一些功能较差的块,并确保两者获得相同的输出,如果两者中的任何一个显示不一致的内容,则标记为一个问题。这允许在操作过程中进行某种程度的自我测试。这种方法很昂贵,因为复制了整个块或处理器。

其他冗余设计更为精确。例如在内存寄存器级别,就像逻辑设计中的触发器,在这里可以找到一些起关键作用的寄存器。要么用一个更大裕量的器件来替换它,要么加入三重模块冗余。因此,从降低成本角度看,它是细粒度、粗粒度和各种其他技术的一种平衡。

这还取决于这些芯片是如何使用的,它们是否是复杂系统的重要组成部分,以及持续监控和反馈的成本是否可以分摊到整个系统价格中。这不是一个简单的等式,也没有简单的答案,特别是在先进节点,额外的电路会增加功耗并降低性能。

先进节点的尴尬境地

高级驾驶员辅助系统(ADAS)和向完全自动驾驶方向发展正在采用最新节点的半导体制造工艺,而可靠性成为汽车行业最关心的问题。虽然成熟的节点仍然是主流,但汽车芯片已经发展成为大型复杂的SoC。其中包括集成到异构封装和配置中的先进节点器件,这些封装和配置还未经尝试。过去,电子控制单元通常只有一个处理器或存储器单元。情况不再如此,从验证到各种类型的测试,包括符合性测试,都变得更加严格。

一些汽车芯片变得越来越复杂和小巧玲珑。车辆的中央逻辑尤其如此,它需要管理所有其他系统以避免车辆出现故障。目前的设计使用的是7nm和5nm逻辑,这已是芯片制造的前沿,但这些器件必须能够承受恶劣的环境,并且比消费芯片正常工作至少要长10年。一个节点的一种工艺是否存在问题,通常需要五到六年的时间才能知道。采用5nm到7nm技术,我们不知道会有什么变化。因此,最近NXP、高通将5nm芯片引入汽车既是在挑战诱惑,也要面对巨大的挑战。

回顾一下,前不久智能手机5nm芯片无一幸免被曝实际功耗不低,发热未减。在封装和测试方面,许多人都体验到汽车出现故障的地方之一是标准塑料或陶瓷,其选择主要基于成本。这表明,芯片公司的专业知识仍然存在差距,一些公司从未涉足汽车领域,而汽车供应商和主机厂对先进节点芯片设计和制造中的一些问题没有经验。

尽管主机厂和Tier 1的要求很严格,但一定程度的失效是不可避免的。电子设备会因各种原因而磨损,芯片可能由于一个设计缺陷,也可能由于芯片蚀刻时困在薄膜中的尘埃颗粒或气流问题而出现问题。何况有大量的研究表明,当一个杂散α粒子击中一个7nm晶体管时会发生灾难性的后果。

要控制这样的问题,需要在系统和电路两个层面都有深入的了解,但目前还没有足够的数据能够就问题可能在哪里爆发以及为什么爆发得出好的结论。

<上一页  1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

电子工程 猎头职位 更多
扫码关注公众号
OFweek电子工程网
获取更多精彩内容
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号