侵权投诉
订阅
纠错
加入自媒体

氮化镓(GaN)是否会成为下一个市场追逐的风口?

随着消费电子产品、电动车、家用电器等产品更新换代,产品的性能也越来越受重视,尤其是在功率设计方面。如何提升电源转换能效,提高功率密度水平,延长电池续航时间,成为了新一代电子产品面临的最大挑战。

在这样的背景下,一种新型的功率半导体——氮化镓(GaN)的出现,或许会成为未来电子产业的“香饽饽”。

蛰伏20年的GaN,却被雷布斯“一不小心”带火

上个月刚结束的小米10发布会上,和小米10一同火起来的,还有小米创始人雷军着重介绍额65W小米GaN充电器。雷军夸其为“实在太方便了!”新品火起来的同时,还引起投资人对于第三代半导体的广泛关注。

了解GaN之前,首先我们要弄清楚关于半导体材料的一些知识。半导体材料发展到现在已经进入了第三代。

第一代半导体材料主要是指硅(Si)、锗(Ge)等元素的材料,常用在信息技术中的分立器件和集成电路中,电脑、手机、电视、航空航天、各类军事工程等产业中都得到了极为广泛的应用。

第二代半导体材料主要是指化合物半导体材料,如砷化镓(GaAs)、锑化铟(InSb);三元化合物半导体,如GaAsAl、GaAsP;还有一些固溶体半导体,如Ge-Si、GaAs-GaP;玻璃半导体(又称非晶态半导体),如非晶硅、玻璃态氧化物半导体;以及有机半导体,如酞菁、酞菁铜、聚丙烯腈等。主要用于制作高速、高频、大功率以及发光电子器件,是制作高性能微波、毫米波器件及发光器件的优良材料。

第三代半导体材料主要以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)为代表的宽禁带半导体材料。在应用方面,根据第三代半导体的发展情况,其主要应用为半导体照明、电力电子器件、激光器和探测器、以及其他4个领域。在本文中重点介绍的GaN,并不存在于自然界,只能在实验室中制成。

在1998年,美国研制出GaN晶体管,资料显示,GaN在室温下带隙为3.49eV(电子伏特)。一般来说,带隙就是指禁带宽度,是半导体材料的一个重要特征参量,其大小主要决定于半导体的能带结构。

若禁带宽度Eg< 2.3eV,则称为窄禁带半导体,如Ge、Si、GaAs以及InP;若禁带宽度Eg>2.3eV则称为宽禁带半导体,如SiC、GaN、HSiC、AlN以及ALGaN等。

由于宽禁带半导体材料具有禁带宽度大、击穿电场强度高、饱和电子漂移速度高、热导率大、介电常数小、抗辐射能力强以及良好的化学稳定性等特点,非常适合于制作抗辐射、高频、大功率和高密度集成的电子器件。

以GaN为例,熔点高达1700℃。有人曾做过实验,在一般高温情况下,GaN不会发生分解反应,只有将其放置于氮气或氦气中且温度超过1000℃时GaN才会慢慢挥发,证明GaN可以在较高的温度下保持其稳定性。这也是为什么GaN能被广泛运用在大功率半导体中的原因。

GaN产业链及应用前景

与SiC产业链类似,GaN产业链可依次分为GaN衬底→GaN外延→器件设计→器件制造。从国内外GaN产业发展来看,美国、日本成为GaN产业发展的佼佼者,中国企业入局者则为数不多。

氮化镓(GaN)是否会成为下一个市场追逐的风口?

(资料源自中泰证券研究所)

1  2  下一页>  
声明: 本网站所刊载信息,不代表OFweek观点。刊用本站稿件,务经书面授权。未经授权禁止转载、摘编、复制、翻译及建立镜像,违者将依法追究法律责任。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号