侵权投诉
订阅
纠错
加入自媒体

聚焦2013年电子科技行业十大前沿技术

  集成电路突破半导体限制:不使用半导体的晶体管 VS 光子回路

  不使用半导体的晶体管

  据报道,美国科学家首次利用纳米尺度的绝缘体氮化硼以及金量子点,实现量子隧穿效应,制造出了没有半导体的晶体管。该成果有望开启新的电子设备时代。

  几十年来,电子设备变得越来越小,科学家们现已能将数百万个半导体集成在单个硅芯片上。该研究的领导者、密歇根理工大学的物理学家叶跃进(音译)表示:“以目前的技术发展形势看,10年到20年间,这种晶体管不可能变得更小。半导体还有另一个先天不足,即会以热的形式浪费大量能源。”

  科学家们尝试使用不同材料和半导体设计方法来解决上述问题,但都与硅等半导体有关。2007年,叶跃进开始另辟蹊径,制造没有半导体的晶体管。叶跃进说:“我的想法是用纳米尺度的绝缘体并在其顶部安放纳米金属来制造晶体管,我们选择了氮化硼碳纳米管(BNNTs)做基座。”随后,他们使用激光,将直径为3纳米宽的金量子点(QDs)置于氮化硼碳纳米管顶端,形成了量子点—氮化硼碳纳米管(QDs-BNNTs)。对于金量子点来说,氮化硼碳纳米管是完美的基座,其尺寸小、可控而且直径一致,同时还绝缘,也能对其上的量子点大小进行限制。

  研究人员同橡树岭国家实验室(ORNL)的科学家们携手合作,在室温下让量子点—氮化硼碳纳米管两端的电极通电。有趣的事情发生了:电子非常精确地从一个量子点跳到另一个量子点这就是量子隧穿效应。叶跃进表示:“这种设备的稳定性非常好。”

  叶跃进团队利用这一设备制造出了一种晶体管,其中没有半导体的“身影”。当施加足够的电压时,其会打开到导电状态;当电压低或关闭时,它会恢复到其天然的绝缘体状态。而且,这一设备没有“漏网之鱼”:没有来自金量子点的电子逃进绝缘的氮化硼碳纳米管内,因此,隧道会一直保持冷的状态。而硅常遇到泄露,使电子设备中的大量能量以热的形式被浪费掉。

  密歇根理工大学的物理学家约翰·雅什查克为新的晶体管研究出了理论框架。他表示,此前也有其他科学家利用量子隧穿制造出了晶体管,但这些设备只在液氦温度(4.2K)下工作,而新设备则可以在室温下工作。

  叶跃进的金—纳米管设备的秘密就在于“小”:其仅有1微米长、20纳米宽。雅什查克解释道:“这个金岛的宽度必须在纳米级别,这样才能在室温下控制电子。如果它们太大,有很多电子可以在其上流动。从理论上而言,当电极之间的距离近到几分之一微米时,这些隧道可以小到接近零。”

  光子回路技术或取代集成电路

  电脑速度慢、手机待机时间短、最新的ipad4机体发热严重……生活中,电子产品的这些问题随处可见。由南开大学信息技术科学学院教授、长江学者袁小聪带领的课题组与美国哈佛大学卡帕索(Capasso)教授课题组合作,在国际科技期刊《科学》(Science)上发表了题目为《可重构偏振调控型表面等离激元定向耦合》的文章,在“光子回路”取代“集成电路”领域取得了重大突破,有望解决上述问题。

  据了解,传统微电子技术的特点是依靠集成电子器件提供更高的信息处理速度、存储密度和片上可集成度等能力,但受到纳米尺寸的瓶颈限制,集成电子器件已开始受到制约。与微电子技术发展并行的另一门高新技术——光电子技术,在实现集成光子回路、互联光路、光计算等功能方面显现出巨大的潜力和优势,有可能是取代“集成电路”的新一代信息技术的重要支柱,该技术的关键点是如何在纳米尺寸高度集成的芯片上实现人们像操纵电子那样操控光子。

  表面等离激元(SPPs)是在金属表面区域的一种自由电子和光子相互作用的形成的电磁模,经常被称为“能够实现导线传输光子”的信息载体,它在发展新一代光电子集成技术中发挥重要作用,但怎样在纳米尺寸的芯片上实现SPPs的“传输控制”是该领域的一个国际研究热点。

  袁小聪在文章中提出了一种全新的SPPs耦合方式,通过一系列亚波长“人”字形微纳金属结构,解决了目前入射光偏振态严重影响SPPs耦合效率以及SPP传播方向无法精确控制等技术难题,实现了SPPs的可重构定向耦合新机制,该研究成果对微纳光子芯片水平的SPPs产生、传输、调控、互联与探测等应用有重大积极推进作用,为未来发展SPPs大规模光电子集成与互联技术奠定了基础。

  在谈到“光子回路”未来的应用前景时,袁小聪说,近年来,如何让“光子回路”代替“集成电路”成为光学研究领域的一大热点和难点。电子产品的芯片运行速度越快,集成度越高,能耗就越大,机体也容易发热。以“光子芯片”取代传统的“电子芯片”未来有广泛的应用前景。一方面,“光子芯片”对于降低能耗、减少污染有很大帮助;另一方面,由于光子传播速度远远超出电子,也会满足用户对于电子产品运行速度、待机时间等方面的需求。

<上一页  1  2  3  4  5  6  7  8  9  10  下一页>  余下全文
声明: 本网站所刊载信息,不代表OFweek观点。刊用本站稿件,务经书面授权。未经授权禁止转载、摘编、复制、翻译及建立镜像,违者将依法追究法律责任。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    电子工程 猎头职位 更多
    扫码关注公众号
    OFweek电子工程网
    获取更多精彩内容
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号