仪表放大器
-
一文了解全差分放大器电路的输入端配置设计
全差分放大器在高速信号处理中使用很广,本篇将介绍全差分放大器与通用放大器的区别,以及通过LTspice仿真全差分放大器工作方式,重点讨论全差分放大器电路的输入端配置设计,并推荐一款软件解决设计痛点,高效实现全差分放大器输入端配置与噪声评估
-
仪表放大器失调电压分析与仿真
通过上一篇《仪表放大器的特性与工作电压配置方法》,介绍了仪表放大器内部两级放大电路工作方式,这种结构导致仪表放大器的失调电压、噪声参数与通用放大器的失调电压、噪声参数的评估方式不同,本篇将对此进行分析与仿真
-
一文学会仪表放大器的特性与工作电压配置方法
在工业传感领域中,仪表放大器应用最为广泛,相比通用放大器,它的输入阻抗高,抗共模干扰强,在强噪声环境下,能保证放大电路的增益与精度,然而需要注意仪表放大器的工作电压配置方式比较复杂。本篇讨论仪表放大器特性与有效工作电压配置方法
仪表放大器、工作配置 2021-03-27 -
Cirrus Logic智能升压放大器为新一代智能手机、平板电脑和游戏设备带来沉浸式移动音频体验
当使用扬声器模式播放音乐、播客,开视频电话会议,或看电影和玩游戏时,Cirrus Logic CS35L45升压放大器为消费者打造全新音频享受美国德克萨斯州奥斯汀,2021年3月25日:随着消费者越来
-
简析:多路放大器通道隔离度参数与绝对最大额定值的使用
本篇介绍放大器的多路放大器通道隔离度参数与绝对最大额定值的使用,到此完成关于通用放大器参数的使用讨论。1.多路放大器通道隔离度放大器的通道隔离度(MULTIPLE AMPLIFIERS CHANNEL
多路放大器通道隔离度、绝对最大额定值 2021-03-21 -
放大器参数与热阻参数对温度影响的评估
放大器参数的性能通常会受温度影响,而温度的变化来源包括环境温度波动,以及芯片自身总功耗和散热能力限制。其中放大器的总功耗包括静态功耗、输出级晶体管功耗,本篇将讨论二者与热阻参数对温度影响的评估方法。1
-
放大器总谐波失真与总谐波失真加噪声参数
在精密测量电路、音频信号处理电路中,不但要关心电路噪声,还要考虑谐波对信号失真程度的影响。本篇介绍总谐波失真与总谐波失真加噪声参数。1 总谐波失真与总谐波失真加噪声定义对于一款正弦波,使用示波器可以观测它幅值和频率信息
-
放大器输入和输出电压范围轨到轨的理解误区
由于工艺限制放大器的输入电压范围、输出电压范围和供电电压之间存在电压差。在设计中,应确保电路在信号处理中不会因为放大器的输入、输出限制导致失真。本篇将介绍放大器输入电压范围和输出电压范围参数的使用方法与轨到轨的理解误区
-
手机功率放大器ADL5551的性能特点
ADI公司推出的新型手机用RF功率放大器模块ADL5551,它集成了一流的RF检测和功率控制技术,使手机的性能得到改进,延长电池寿命,降低制造成本。ADL5551采用先进的GaAsHBT功率放大器工艺技术,采用闭环输出功率测量的控制
-
通过仿真介绍放大器的建立时间
本篇通过仿真介绍放大器的建立时间,也称为上升时间。它是高速放大电路、或在SAR ADC驱动电路设计时,需要谨慎评估的参数。1 建立时间定义建立时间(Setting Time,ts)是指定放大器增益时,在输入阶跃信号作用下,输出电压全部进入指定误差范围内所需要的时间
-
放大器容性负载驱动的稳定性改善方法
放大器驱动容性负载,是比较容易引发稳定性问题的电路。本篇将结合仿真讨论放大器自身的容性负载能力,以及针对容性负载驱动能力不足的情况,提供一种依据放大器开环输出阻抗参数补偿容性负载驱动能力,保证电路稳定工作的方法
-
SE2520L功率放大器的性能特点分析
SiGe半导体公司推出的符合IEEE802.11b无线网络标准的功率放大器SE2520L,它和Broadcom公司的BCM2051和BCM4301/7芯片组组成完整的三片式WLAN系统。以PCI和MiniPCI卡格式提供,使台式和便携式计算机,接入点,手持机和PDA能具有成本效率的宽带无线功能
-
技术文章:跨阻放大器在光电传感电路中的稳定性分析
当放大器输入、输出管脚存在电容时,容易导致放大器电路不稳定,这个电容可以是电容器、也可以是具有容性特征的器件。例如本篇将讨论的光电二极管传感器,笔者从事研发时也曾爬过这个坑。由于光电二极管内部具有等效
-
使用相位裕度分析放大器稳定性的方法
相位裕度与增益裕度都是用于评估放大器的稳定性的参数。其中,相位裕度使用更为普遍。本篇将介绍使用相位裕度分析放大器稳定性的方法。1 相位裕度与增益裕度定义如图2.109(b),相位裕度(Phase margin
-
在(闭环)电路中,放大器增益带宽积评估信号带宽的方法
在《计算放大器电路的大信号带宽就用压摆率|LTspice一条指令轻松解锁》文中,介绍过放大器处理幅值大于等于100mV的交流大信号时,应当使用压摆率参数评估信号带宽。而处理幅值小于100mV的交流小信号时
-
技术分析:放大器开环增益
本篇讨论放大器参数是在工程师选型时,存在感很低的开环增益(或大信号增益)。1.开环增益与大信号电压增益定义开环增益(Open-Loop Gain,AVO或Avol),是指不具负反馈情况下(开环状态),放大器的输出电压改变量与两个输入端之间电压改变量之比
放大器、开环增益、频率特性 2021-01-14 -
放大器电源抑制比的交流性能评估方法
相比线性电源而言,开关电源具有高效率、小体积等优势,已经广发应用在各类电子产品。但是在精密测量电路中,开关电源对模拟信号的处理电路有很大挑战,不可忽视的原因是放大器的交流电源抑制能力有限。本篇讨论放大器电源抑制比的交流性能评估方法,以及提升抑制性能的方法
-
技术文章:放大器电源抑制比参数影响评估与测试电路仿真
放大器电源抑制比参数对电路的影响与共模抑制比参数的影响近似,因为来自电源线路的噪声对于放大器而言可视为共模噪声。本篇介绍放大器电源抑制比参数的评估方法,并通过LTspice仿真参数测量电路。电源抑制比(Power Supply Rejection Ratio
-
信号源内阻对差动放大电路共模抑制比的影响分析与改善方法
《差动放大电路中电阻误差对电路共模抑制比的影响与蒙特卡洛分析》一文,介绍在差动放大电路设计时匹配电阻精度造成的影响,而在差动放大电路应用中还有一个不可忽略的因素——信号源内阻。本篇对信号源内阻在差动放大电路的共模抑制比影响进行理论分析
-
技术分析:放大器共模抑制比参数与频率的关系
在《放大器共模抑制比(CMRR)参数评估与电路共模抑制能力实例分析》文中,介绍使用共模抑制比的倒数,将共模信号折算到输入端评估所引起的误差,有工程师认为这种方式在输入共模信号为交流信号时的结果“不准确”
-
技术分析:差动放大电路中电阻误差对电路共模抑制比的影响与蒙特卡洛分析
如《放大器共模抑制比(CMRR)参数评估与电路共模抑制能力实例分析》中案例,由于电阻误差导致电路共模抑制能力下降,是使用通用放大器组建差动放大电路的常见问题之一。工程师常常疑惑1%误差的电阻对共模抑制比产生的影响有多大?本篇将详细讨论,并配合LTspice中蒙特卡洛分析进行仿真
-
放大器共模抑制比参数评估与电路共模抑制能力分析
许多硬件工程师会将放大器的共模抑制比视为最难掌握的直流参数,首先因为定义所涉及的因子容易产生混淆;其次,掌握了共模抑制比的定义,按其字面理解难以在设计中直接使用;最后,掌握了放大器的共模抑制比参数的评估方法,不代表可以在应用电路对共模信号实现有效抑制
-
技术文章:放大器偏置电流Ib需要完整的直流回路
多数工程师对于放大器偏置电流参数并不陌生,它是导致放大器电路产生直流噪声的又一重要影响因素。因为偏置电流经过输入端电阻网络会形成一个失调电压源,再通过电路的噪声增益影响输出直流噪声。所以工程师会注重电阻网络的匹配,降低偏置电流对电路的影响
-
技术文章:放大器Vos 失调电压的测试与处理方法
在直流耦合电路中,不可避免要对直流噪声进行测量与评估。放大器的失调电压参数作为直流噪声重要的组成部分是首先被提及的。本篇介绍一种放大器失调电压参数的测量方式与相应注意事项,配合LTspice仿真帮助理解,以及提供失调电压处理方法
-
技术文章:为什么放大器压摆率会受到输入端大信号的限制?
上一篇《计算放大器电路的大信号带宽就用压摆率|LTspice一条指令轻松解锁》一文,收到几位工程师的留言“如何分辨大、小信号?”这个问题是根据工程经验来区分,通常将峰峰值小于100mV的输入信号完全视为小信号进行处理,而在峰峰值大于等于100mV的输入信号的处理中,按照输入大信号分析压摆率的限制
-
技术分析:算清放大器电路噪声RMS值的糊涂账
开篇的话《运算放大器参数解析与LTspice应用仿真》一书历时半年多完成撰写,目前出版准备工作也有序展开。该书的写作初衷是为模拟电子工程师在放大器设计和使用中,提供有效的指导与帮助,力争使本书成为工程师案头的常备参考书籍
-
技术文章:放大器电路噪声峰峰值的评估要点与实例
虽然在上一篇《来吧LTspice|算清放大器电路噪声RMS值的糊涂账》文中,分享了由放大器电压噪声密度、电流噪声密度参数,在具体电路中所导致噪声RMS值的计算方式与LTspice仿真方法
放大器电路噪声 2020-12-01 -
技术分析:运算放大器如何同时实现高精度和高输出功率
工程师常常面对各种挑战,需要不断开发新应用,以满足广泛的需求。一般来说,这些需求很难同时满足。例如一款高速、高压运算放大器(运放),同时还具有高输出功率,以及同样 出色的直流精度、噪声和失真性能。市面上很少能见到兼具所有这些特性的运算放大器
-
东芝推出超低电流消耗的CMOS运算放大器
中国上海,2020年9月29日——东芝电子元件及存储装置株式会社(“东芝”)今日宣布,其产品线中新增了新型CMOS运算放大器“TC75S102F”,该产品拥有行业领先[1]的超低电流消耗。新产品将于今日开始出货
-
ADALM2000实验:共发射极放大器
共发射极放大器是三种基本单级放大器拓扑之一。BJT共发射极放大器一般用作反相电压放大器。晶体管的基极端为输入,集电极端为输出,而发射极为输入和输出共用(可连接至参考地端或电源轨),所谓“共射”即由此而来。
共发射极放大器 2020-08-13 -
学子专区:基本运算放大器配置
目标:在本实验中,我们将介绍一种有源电路——运算放大器(op amp),其某些特性(高输入电阻、低输出电阻和大差分增益)使它成为近乎理想的放大器,并且是很多电路应用中的有用构建模块。在本实验中,你将了解有源电路的直流偏置,并探索若干基本功能运算放大器电路
-
一种直接测量运算放大器输入差分电容的方法
第53卷第4期,2019年10月Glen Brisebois和Arthur Alfred Roxas简介输入电容可能会成为高阻抗和高频运算放大器(op amp)应用的一个主要规格。值得注意的是,当光电二极管的结电容较小时,运算放大器的输入电容会成为噪声和带宽问题的主导因素
-
解读全差分放大器输出特性参数
全差分放大器是一类具有差分输出的差分放大器,由于其输入输出都为差分信号所以在差分信号处理中有其应用。差分信号(无论是输入还是输出)是由两路反相对称的单端信号组合而成,所以一般差分由三线构成(含信号地)
全差分放大器 2019-10-14 -
QORVO 通过10W Ka波段GaN放大器打破功率屏障
2019年6月12日,移动应用、基础设施与国防应用中核心技术与 RF 解决方案的领先供应商 Qorvo, Inc.(纳斯达克代码:QRVO)今日宣布,推出 MMIC 功率放大器,该放大器在 32-38GHz 频段提供超过 10 瓦饱和功率
-
补偿环节三类误差放大器简介
本公众号曾对运放进行了比较深入的介绍,具体请参照本公众号系列文章:运放系列讲座1:运放稳定性分析运放系列讲座2:运放开环和闭环输出阻抗运放系列讲座3:选择合适的运放输入类型本文将重点介绍控制系统中补偿环节经常用到的三类误差放大器,开关电源中通常称为Type I,Type II,Type III
-
OPPO Reno顶配版放大招:60倍变焦实际体验如何?
日前OPPO放出了Reno 10倍变焦版的测试固件,在该固件中加入了60倍变焦功能,论倍数的话比华为的P30 Pro还要高。不过由于目前Reno 10倍变焦版尚未正式开售,这个功能会不会放到零售版产品之中还是未知之数。
-
-
我国5G GaN功率放大器芯片已通过认证
近日,在2018中国国际应用科技交易博览会上,我国5G芯片交出了一份喜人的成绩:国产5G通信基站GaN(氮化镓)功率放大器芯片在中国发明成果转化研究院展区对外亮相。
-
电子电路设计中最常用的运算放大器应用及典型设计
在实际工作中我经常运用到的运放放大器电路推荐给大家;其应用领域已经延伸到汽车电子、通信、消费等各个领域,并将在未来技术方面扮演重要角色。
最新活动更多 >
-
精彩视频立即观看>> 引爆数据变革,ADI开辟行业未来
-
精彩视频立即观看 >> ADI精密技术助力迈入新疆域
-
4月21日立即报名>> 【在线研讨会】海克斯康新能源汽车方案“智”造加速日
-
4月28日立即报名>> 【在线研讨会】镜头设计与分析——CYBERNET莎益博
-
4月29日立即报名>> OFweek 2021人工智能在线大会暨展览会
-
即日-4.30立即下载>> 【白皮书下载】Festo电池生产解决方案