scipy.optimize.linprog函数参数最全详解
1 线性规划概念
定义:在线性等式和不等式约束下,最小化线性目标函数。
2 输入格式
scipy.optimize.linprog(c,A_ub=None,b_ub=None,A_eq=None,b_eq=None,bounds=None,method='interior-point',callback=None,options=None,x0=None)
3 参数设置
'''
c:线性目标函数的系数; 数据类型:一维数组
A_ub(可选参数):不等式约束矩阵, A_{ub} 的每一行指定 x 上的线性不等式约束的系数;数据类型:二维数组
b_ub(可选参数):不等式约束向量,每个元素代表 A_{ub}x 的上限;数据类型:一维数组
A_eq(可选参数):等式约束矩阵, A_{eq}的每一行指定 x 上的线性等式约束的系数;数据类型:二维数组
b_eq(可选参数):等式约束向量,A_{eq}x 的每个元素必须等于 b_{eq} 的对应元素;数据类型:一维数组
bounds(可选参数):定义决策变量 x 的最小值和最大值;数据类型:(min, max)序列对
None:使用None表示没有界限,默认情况下,界限为(0,None)(所有决策变量均为非负数)
如果提供一个元组(min, max),则最小值和最大值将用作所有决策变量的界限。
method(可选参数):算法,{‘interior-point’, ‘revised simplex’, ‘simplex’}以上三种算法可选;数据类型:输入如上三种字符串
callback(可选参数):调用回调函数,我的理解是等待被调用的参数 ,如果提供了回调函数,则算法的每次迭代将至少调用一次。回调函数必须接受单个 scipy.optimize.OptimizeResult由以下字段组成:
x:当前解向量; 数据类型:一维数组
fun:目标函数的当前值(c^Tx); 数据类型:浮点数
success:当算法成功完成时为 True;数据类型:布尔值
slack:不等式约束的松弛值(名义上为正值) b_{ub} ? A_{ub}x; 数据类型:一维数组
con:等式约束的残差(名义上为零) b_{eq} ? A_{eq}x;数据类型:一维数组
phase:正在执行算法的阶段; 数据类型:整数
status:表示算法退出状态的整数; 数据类型:整数
0 : 优化按名义进行
1 : 达到了迭代限制
2 : 问题似乎不可行
3 : 问题似乎是不收敛
4 : 遇到数值困难
nit:当前的迭代次数; 数据类型:整数
message:算法状态的字符串描述符; 数据类型:字符串
options(可选参数)——求解器选项字典,所有方法都接受以下选项:
数据类型:字典
maxiter:整数,要执行的最大迭代次数
disp:布尔值,设置为True以打印收敛消息,默认值:False
autoscale:布尔值,设置为True以自动执行平衡,如果约束中的数值分开几个数量级,请考虑使用此选项,默认值:False
presolve:布尔值,设置为False可禁用自动预解析,默认值:True
rr:布尔值,设置为False可禁用自动移除冗余,默认值:True
x0(可选参数):猜测决策变量的值,将通过优化算法进行优化。当前仅由’ revised simplex’ 方法使用此参数,并且仅当 x0 表示基本可行的解决方案时才可以使用此参数。 数据类型:一维数组
'''
4 输出格式
'''
x:在满足约束的情况下将目标函数最小化的决策变量的值;数据类型:一维数组
fun:目标函数的最佳值(c^Tx);数据类型:浮点数
slack:不等式约束的松弛值(名义上为正值) b_{ub}-A_{ub}x;数据类型:一维数组
con:等式约束的残差(名义上为零)b_{eq}-A_{eq}x;数据类型:一维数组
success:当算法成功找到最佳解决方案时为 True;数据类型:布尔值
status:表示算法退出状态的整数;数据类型:整数
0 : 优化成功终止
1 : 达到了迭代限制
2 : 问题似乎不可行
3 : 问题似乎是不收敛
4 : 遇到数值困难
nit:在所有阶段中执行的迭代总数;数据类型:整数
message:算法退出状态的字符串描述符;数据类型:字符串 '''
5 例子
import scipy
from scipy import optimize
import numpy
c = numpy.array([2,3]) #最值等式未知数系数矩阵
A_ub = numpy.array([[-1,1],[2,-2]]) #<=不等式左侧未知数系数矩阵
B_ub = numpy.array([1,1]) #<=不等式右侧常数矩阵
#A_eq = numpy.array() 等式左侧未知数系数矩阵
#B_eq = numpy.array() 等式右侧常数矩阵
x = (None,1) #未知数取值范围
y = (None,None) #未知数取值范围
res = scipy.optimize.linprog(c,A_ub,B_ub,bounds = (x,y)) #默认求解最小值,求解最大值使用-c并取结果相反数
print(res)
#结果:无解情况
con: array([], dtype=float64)
fun: -8782091626.64441
message: 'The algorithm terminated successfully and determined that the problem is unbounded.'#算法成功终止,确定问题是无界的
nit: 3
slack: array([0.89897776, 1.20204449])
status: 3
success: False
x: array([-1.75641833e+09, -1.75641833e+09])
可以修改问题参数,从而达到有解,欢迎大家尝试!
原文标题 : scipy.optimize.linprog函数参数最全详解
图片新闻
技术文库
最新活动更多
-
即日-12.26立即报名>>> 【在线会议】村田用于AR/VR设计开发解决方案
-
1月8日火热报名中>> Allegro助力汽车电气化和底盘解决方案优化在线研讨会
-
1月9日立即预约>>> 【直播】ADI电能计量方案:新一代直流表、EV充电器和S级电能表
-
即日-1.14火热报名中>> OFweek2025中国智造CIO在线峰会
-
即日-1.20限时下载>>> 爱德克(IDEC)设备及工业现场安全解决方案
-
即日-1.24立即参与>>> 【限时免费】安森美:Treo 平台带来出色的精密模拟
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论