侵权投诉
订阅
纠错
加入自媒体

基于SOPC技术的多通道实时温度采集系统

2015-03-19 02:01
来源: 与非网

  2.4 FPGA逻辑控制模块

  基于FPGA的采集控制单元,采用自顶而下的模块化设计方法,使用Verilog HDL语言完成各控制模块的设计。FPGA逻辑控制模块包括A/D采样控制模块、FIFO读写控制模块和SPC3控制模块。

  2.4.1 A/D采样控制模块

  A/D采样控制模块负责控制外部ADS8402芯片多路模拟输入量的选通,并实现对A/D采样过程的合理控制。

  由于ADS8402对16通道的模拟量采取分时转换的方式,因此在启动转换的同时还要进行通道选择。ADS8402设置了4根通道地址线A0、A1、A2、A3,以及地址锁存允许信号ALE.当ALE变高时,锁存由A0、A1、A2、A3编码所确定的通道号,将该通道的模拟量接入A/D转换器进行转换。依据这样的特性,设计一个带复位端的十六进制计数器,其计数输出端Q3、Q2、Q1、Q0分别与ADS8402的4根地址线相连。计数器上电复位以确保系统从0号通道开始采样。将ADS8402的转换结束信号EOC作为计数器的时钟信号,实现一路转换结束后自动启动对下一路模拟输入的采样控制。

  

  图2 ADS8402采样控制状态转换图

  A/D采样过程的控制采用有限状态机来实现,把某一通道的采样过程划分为7个状态,如图2所示。首先S0状态对各个控制信号进行初始化。在S1状态产生ALE信号的上升沿,锁存通道地址。启动信号START应在产生ALE信号的同一时钟下降沿产生,由于VHDL语言在同一进程内不允许时钟的两个沿作为敏感变量,所以将产生START信号单列为一个状态S2,启动转换。在启动转换后,ADS8402使EOC置为低电平,设置S3状态等待A/D转换结束。转换结束后,EOC信号由低电平转换为高电平,状态机进入S4状态,开启输出允许OE.状态机进入S5状态,开启数据锁存信号LOCK锁存数据。为产生与其他进程通信的信号,状态机设置S6作为最后一个状态,然后跳转回SO初始状态。

  2.4.2 FIFO读写控制模块

  采用2片FIFO轮流读写操作,实现FPGA与PC机之间的数据缓存。乒乓传输控制原理示意图如图3所示,图中的实线箭头与虚线箭头分别代表不同的读写数据周期。输入数据流通过输入数据流选择单元,等时地将数据流分配到FIFO1、FIFO2中。在第1个缓冲周期,将输入的数据流缓存到FIFO1.在第2个缓冲周期,通过输入数据流选择单元的切换,将输入的数据流缓存到FIFO2,与此同时,将FIFO1缓存的第1个周期的数据通过输出数据流选择单元的选择,送到数据流运算处理模块被运算处理。在第3个缓冲周期,通过输入数据流选择单元的再次切换,将输入的数据流缓存到FIFO1,与此同时,将FIFO2缓存的第2个周期的数据通过输出数据流选择单元的切换,送到数据流运算处理模块被运算处理。如此循环,周而复始。

  

  图3 FIFO乒乓传输控制原理

  2.4.3 SPC3控制模块

  由于SPC3集成了完整的DP协议,因此在进行通信时,FPGA不用参与处理DP状态机。主要任务是根据SPC3产生的中断,将SPC3接收到的数据转存,组织要通过SPC3发给的数据,并根据要求组织外部诊断。在SPC3正常工作之前,需要进行初始化,以配置需要的寄存器,包括设置协议芯片的中断允许,写入从站识别号和地址,设置SPC3方式寄存器,设置诊断缓冲区,配置缓冲区、地址缓冲区、初始化长度,并根据以上初始值得出各个缓冲区的指针和辅助缓冲区的指针。通信模块的控制流程如图4所示。

  

  图4 通信模块控制流程

<上一页  1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    电子工程 猎头职位 更多
    扫码关注公众号
    OFweek电子工程网
    获取更多精彩内容
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号