侵权投诉
订阅
纠错
加入自媒体

无线通信探究,从1G到5G

2019-02-18 14:31
来源: 亿欧网

电磁波

要说5G,不懂点电磁波是不行的。提问:仙人掌能防电脑辐射吗?知道答案的大盆友直接看后半篇,下面这段写给小盆友。

日常生活中,除了原子电子之外,剩下的几乎全是电磁波,红外线、紫外线、太阳光、电灯光、wifi信号、手机信号、电脑辐射、核辐射,等等。只要是波,就逃不过三个参数:波速、波长、振幅。电磁波的速度是恒定的光速,因此只需考虑:波长(或频率)、振幅(不考虑方向),其中频率对于电磁波来说,尤为重要。

频率越高,对应着电磁波的波长越短,能量越高,衰减越快,穿透性越差,散射越少,对人体伤害越大。就着这个原则,咱从头到尾捋一遍。

长的电磁波波长能到1亿米,频率3Hz,1秒钟三个波,如果用来通信的话,等你一句话说完,就可以过年了。

稍微正常点的电磁波,波长几万米,用这通信,就一个字:稳!江河大山都挡不住,甚至能穿透几十米深的海水(海水导电,是电磁波的克星)。不过就这点频率,只能勉强携带点信息,发一个hello,大概需要半小时,也就比写信稍微强点。因为超长波实在是稳,一般用在岸台向潜艇单向发送命令。

再短点,几十米波长的电磁波,频率就到了百万赫兹MHz级别,能携带的信息就很可观了,一句话至少能说利索了。而且照样还能跑很远,几百公里不在话下,所以收音机广播、电报、业余无线电一般用这个频段。

说点有用的,假如你困在荒岛上,有个飞机路过,赶紧用121.5MHz呼救,这是民用紧急通信频率,还有个军用紧急通信频率243MHz,这些都是不加密的公共频率。上次解放军和台军战机对峙,双方用这个频率对话,结果被无线电爱好者录下来放网上了,吃瓜群众喜闻乐见之余,又担心我军通信太容易被破解,真是阿弥陀佛了。

波长再短点,到了1米~1厘米,就有意思了。一方面,虽然衰减已经很明显了,但一口气还能跑个百十公里,够用;另一方面,频率到了GHz级别,能携带足够多的信息,不但话能说利索了,还有多余功夫让你加个密什么的。所以这个波段是通信的焦点,什么1G2G3G4G,什么卫星通信雷达通信,全在这,统称微波通信。

到了毫米级,电磁波就跑不了多远了,虽然毫米波不太发散,但很容易被周边物质吸收或反射,几乎没啥穿透性,用来通信很鸡肋,不过用在导弹导引雷达或微波炉上棒棒的。但,毕竟频率超过了30GHz,携带的信息量实在太馋人,要不还是试试吧!于是,5G来了。

5G同志先等等,继续往下数,来到微米级。毫无疑问,能携带的信息量继续倍增,但波长0.7微米的电磁波就已经是可见光了。可见光都见过吧,别说穿墙了,一张纸都够呛,想接着按照7G8G9G的套路肯定走不通啊。然后,就有了激光通信,发射端和接收端必须瞄得准准的,中间还不能有阻挡,这优缺点自个儿体会体会。

波长到了0.3微米,也就是300纳米,先别管频率的事了,这玩意儿就是我们熟知的紫外线,终于对人体有害了。太阳光里的紫外线大约占了4%,如果你一天能晒上半小时太阳的话,那么前面提到的那些电磁波辐射基本可以无视了(不要钻电磁共振的牛角尖,咱只说普遍情况)。

波长200纳米的紫外线,在太阳光中几乎是没有的,所以在阳光太强时,紫外线通信就成了激光通信很好的补充,不但隐蔽性更好,还不用对得那么准,在几公里的距离上非常好用,是近些年军事通信的研究热点。

接下来就和通信无关了,波长到了纳米级就成了X光,就是在医院见到的那种,这么说的话,X光其实也能叫纳米技术(这是玩笑)。

最后,波长短到了0.01纳米以下,这就是闻之色变的伽马射线,来自核辐射,全宇宙最强的能量形式之一!若是要毁灭一个星系,伽马射线是不二之选。实际上,科学家一直怀疑,超新星爆炸产生的伽马射线爆已经毁灭了绝大部分的宇宙文明,好在太阳系处于比较角落的地带,周边恒星不多。

终于说完了波长频率,那振幅呢?连仙人掌能不能防辐射都不知道,也就没必要了解振幅的含义了,直接跳过。

1和0

回到微波通信。

为什么频率越高,能携带的信息就越多?以数字信号为例,信息就是一串串的1和0,所以先搞清楚怎样用电磁波表示1和0。

第一种方法叫“调幅”,基本思路是调整电磁波的振幅,振幅大的表示1,振幅小的表示0,如下图。收音机的AM就是调幅,缺点颇多。

第二种方法叫“调频”,基本思路是调整频率来表示1和0,比如,用密集的波形表示1,疏松的波形表示0。收音机的FM就是调频,优点多多的。

很显然,在单位时间内,发出的波越多,能表示的1和0就越多,换句话说,频率越高能携带的信息就越多。

这样算起来,频率800MHz意味着每秒产生800万个波,都用来表示1和0的话,1秒钟可以传输100M数据,这速度很快啊!为啥我们感觉不到呢?

古语有云,重要的事情说三遍,通信也是如此。无线电拔山涉水,弄丢几个1,0太正常了,防止走丢的土办法就是抱团。比如,用一万个连续的1表示一个1,哪怕路上走丢了两千个1,最后咱还能认得这是1。

这种傻办法只能用在民用通信,因为特征太明显,很容易被破解。还记得北斗民用信号被破解的新闻吧,原因就在此。

民用信号只要能和其他信号区分开就行,不会弄得太复杂,不然传输效率太低。按2G技术那样,800MHz的频率,传输数据大不过每秒几十K。

军用就两码事了,为了防止被破解,要用很复杂的组合来表示1和0,中间说不定还有很多无效信息,各种跳频技术扩频技术,还不停变换组合,总之越花哨越好。所以同样一句话,军事通信要用掉更多的1,0,因此为了保证传输效率,军用频率就比民用高很多。

就目前来说,顶级破解技术还干不过顶级加密技术,这里不包括尚未成熟的量子通信。

军事对抗是无止境的,干不过也不能认怂!那怎办?既然弄不清楚你的1,0,那我就索性再送你一堆1,0,把你原有的组合搞乱,让你自己人都懵逼。这就是电子对抗的环节,跑题了,还是说回5G。

关键技术

前面说的,都是不值钱的原理,下面看看值钱的技术。5G关键技术有一堆说法,咱给粗暴地归个类。

振荡电路插个天线就可以产生电磁波,用特定方法改变电磁波的频率或振幅,变成各种复杂的组合,这个过程叫调制。对应的,竖个天线就能收到空中的电磁波,按预定方法变回1,0,这个过程叫解调。

把电磁波发到空中,或者把空中的电磁波收下来,都需要天线,别以为现在手机光溜溜的就不需要天线了。手机与手机是无法直接通信的,而是通过周边的基站与别的手机联系。于是,问题来了,5G使用的毫米波在空气中衰减非常严重,但又不能无限制提高发射功率,怎么办呢?只能在天线上做文章了。

5G的第一个关键技术:大规模多天线阵列。大白话就是,增加天线的数量,不是增加一个两个,而是几百个。这个思路很好理解,但是呢,用那么多天线发射同一个信号,稍不留神就乱成一锅粥。

多天线加毫米波,对比原先的少天线加厘米波,无线电传播的物理特征肯定不一样,得重新建立信道模型。那信道模型怎么建立呢?相信我,你不会感兴趣的。

天线一多,不但能解决毫米波衰减的问题,传输效率、抗干扰等性能也是蹭蹭涨,算是5G必须课。

曾与华为齐名的大唐电信于2015年率先发布了256大规模天线,引爆全球通信业,一时风光无限!可惜后来突然闪崩,沦落到卖科研大楼求生,令人唏嘘!

基站天线搞定,下面就轮到终端机的天线了,这货也有术语:全双工技术。

一般手机的通信天线只有一个,收发信号交替进行,费劲的很!全双工技术,就是把发信号的天线和收信号的天线分开,收发信号同时进行,优点就不说了。不过,这很难吗?

你想想,把话筒和音响挨在一起,还要求两者能正常工作,你说难吗?大体上分两个思路,其一,物理方法,比如在俩天线之间加屏蔽材料;其二,信号处理,比如无源模拟对消等。

2016年4月华为宣布已于成都5G外场率先完成第一阶段5G关键技术验证,测试结果完全达到预期。其中两个重要验证就是大规模天线技术和全双工技术。

天线搞定了,再来就是"新多址接入技术",这词听着真拗口,别急,马上就顺了!

1  2  3  下一页>  
声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    电子工程 猎头职位 更多
    扫码关注公众号
    OFweek电子工程网
    获取更多精彩内容
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号