新能源技术的EMI分析设计!
今天在深圳进行《开关电源技术&汽车电子》主题报告中谈到汽车电子-新能源技术的电磁兼容问题,我有分析新能源汽车电子的EMC问题,EMC的三要素已经成为了我们的行动大纲;EMC三要素:干扰源-耦合路径-敏感设备;从理论上三要素如果解决处理好任意一个因素就构不成干扰或骚扰的问题;
EMC=EMI+EMS;对于EMS的三要素:干扰源(比如外部施加EFT,ESD,SURGE)通过传递路径(耦合路径)到我们的敏感电路产生噪声干扰;功率半导体电子线路的功能及性能的问题!
对于EMI的三要素:骚扰源(内部电路的du/dt(电压突变)&di/dt(电流突变))通过传递路径到等效天线的模型被我们的EMI的测试接收机接收;就形成了我们的EMI数据-必须达到无线电通信限值的要求!
我的EMI的理论是先分析再设计;实现性价比最优化原则!如下图:
通过上图我从EMI的正向设计进行了系统的讲述:对于功率半导体电子线路;
A.确认有哪些噪声源;
B.分析噪声源的特性;相关资料可以通过网络搜索作者名字下载或观看;(我的理论:先分析再设计;了解噪声源头特性是关键)!
C.确认噪声源的传递路径;这也是我们大多数工程师处理EMI-Issue时的着手点;(处理的手段和方法);EMI的耦合路径:感性耦合;容性耦合;传导耦合;辐射耦合!
D.对上述的结果进行分析确认后;就会有最佳化的设计!
针对新能源汽车电子SiC器件替代IGBT器件其明显优势:功率损耗降低
效率高,提高电池续航能力!同时器件的高温高压高频更小体积带来优越性会更明显;
下面就新能源汽车电气系统拓扑以及各部件的EMI干扰参考图示分析!
新能源汽车的干扰主要来自于:主驱,空调,DC-DC,辅驱等电气设备;从实际的经验来看,目前系统的EMC问题90%来源于逆变器及电机!
解决了逆变器及电机(电控主驱)的EMI问题,就基本完成了主要的工程设计了。
1.我们先来分析逆变器&电机:差模干扰源及耦合路径!
通过示波器我们能测量到逆变器的输出电流和主回路直流电压上的高频分量!如上图的波形图示!
如果我们采用的IGBT功率器件开关改变电流的通路,可以测量到续流二极管反向恢复特性有高频振荡环流(本体二极管的反向恢复特性!)如果我们将IGBT采用宽禁带半导体SiC器件就可以改善其反向恢复电流的问题,同时提高效率!
SiC器件体二极管的1200V/10A反向恢复特性如下:反向恢复电流小不到3A;
注意在应用时,SiC的驱动设计和IGBT有相似的设计应用-参考如下:
A.如上图所示使用以Zener diode作为驱动的正负电压的控制方法
B.对于驱动IC而言,其看到的Vcc为0~24V,但对MOSFET而言,其Vgs得到数值由于zener diode的电压差,在Vout输出其负电压为-4V,而Vout输出为正电位位时将会为20V!
C.有的SiC MOS建议以-5~20V的范围SiCMOSFET组件可获得较佳的性能!
D.如果在使用上有Ringing问题,需要增加Snubber或在Gate端加入磁珠减少振荡情况!
2.我们再来分析逆变器&电机:共模干扰源及耦合路径!
我们知道功率半导体电子线路其共模骚扰路径是我们EMI骚扰源的重要干扰来源;解决共模干扰是我们设计的关键!进行共模骚扰源的电子线路等效如下:
SiC器件替代IGBT;EMI更难?EMI传导&辐射问题怎么破?逆变器&电机:SiC器件开关du/dt&di/dt在时域的噪声问题分析!
图片新闻
技术文库
最新活动更多
-
1月8日火热报名中>> Allegro助力汽车电气化和底盘解决方案优化在线研讨会
-
1月9日立即预约>>> 【直播】ADI电能计量方案:新一代直流表、EV充电器和S级电能表
-
即日-1.16立即报名>>> 【在线会议】ImSym 开启全流程成像仿真时代
-
即日-1.20限时下载>>> 爱德克(IDEC)设备及工业现场安全解决方案
-
即日-1.24立即参与>>> 【限时免费】安森美:Treo 平台带来出色的精密模拟
-
即日-1.31立即参与>>> 【限时免费下载】村田白皮书
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论