“卷王”英伟达的真面目
GTC 2022过后,广大人民群众纷纷奔走相告,黄仁勋又带着他的新“核弹”来“炸街”了。
具体发布的新产品和技术,很多文章都已经详尽地介绍过了,一言以蔽之:牛!其中最炸裂的是H100 GPU,采用了台积电4纳米制程工艺,集成1800亿个晶体管,浮点计算能力相比前一代A100快了三倍,被看作英伟达的新一代“核弹”。
一时间锣鼓喧天、鞭炮齐鸣,工业界盼到了“算力怪兽”,消费者们也迎来了显卡降价的日子。
但冷静下来想一想,英伟达是“为AI继算力,为众人送温暖”的大善人吗?无论粉丝还是看客,都必须承认,英伟达是一个商业奇才。作为最传奇的数字经济股,它的营收远低于英特尔或Meta,但市值却遥遥领先,这显然不是“技术信仰”所能够解释的。
用黄仁勋本人的说法,英伟达历史上几次具有里程碑意义的关键技术推出,背后其实都是对自家 GPU 技术的发展成果进行了“泛化”(generalize),发现它居然可以做更多不同的事情。
究竟是新需求催生了新产品,还是新产品激活了新需求,这是一个“鸡生蛋蛋生鸡”的问题。但我们可以从英伟达的行动与结果的相关性中,总结出一个屡试不爽的模板:
在主流需求未曾触顶的时候,扩充丰富产品线,哪怕“穿马甲”也要全面布局,将利基市场挖掘到最大价值;而一旦主流需求出现颓势和退潮,超过当前市场需求的核弹级产品就会被抛出(当然功耗也爆炸了),再次点燃大众和华尔街对GPU的想象空间,进一步英伟达的估值推向新高。
比起“卷王之王”,英伟达更像是稳坐钓鱼台的姜太公,把全球消费者和产业界拿捏得明明白白。
四次供需“反弹”,英伟达的算力霸主之路
英伟达的算力霸主地位,究竟是怎么实现的呢?细数历史上的几次里程碑事件,会发现有四次关键“反弹”。
第一次反弹:个人电脑的增长风暴。
从1993年成立到1999年这段时间里,英伟达在群雄林立的显卡市场中并没有占据太大的领先优势。
当时研发显示芯片的厂商多如牛毛,除了IBM、索尼、东芝等半导体巨头,垂直赛道如Matrox、3dfx、Trident、S3 Graphics都曾引领风骚。英伟达先后发布的NV1、NV2都没有什么竞争力,差点破产。1999发布的TNT2(也就是“NV5”)虽然夺得了性能桂冠,但速度只比NV4提高了10%至17%,跟主要竞争对手3dfx Vodoo3也没有拉开差距。
于是,第一个“核弹”来了,英伟达推出了NV10,也就是GeForce 256——第一款专业图形处理核心,直接轰开了个人电脑游戏加速的市场。
在此之前,GPU显示芯片都属于固定功能的芯片,而GeForce 256的出现,成为了第一款“集成了转换、照明、三角形设置/剪裁和渲染引擎的单芯片处理器”,能够每秒处理至少1000万个多边形,让GPU可以从CPU手里接管大量几何运算的工作,解决通用计算无法解决的问题,极大地推动了PC游戏、创意设计等对GPU的需求。
为了充分发挥GeForce 256的计算潜力,英伟达还基于该芯片推出了Quadro框架,服务于专业绘图工作站,用来帮助创意和技术人员更高效地工作。随后又推出了可编程 shader,让开发者可以在GPU上发挥更多创意,比如3D渲染、游戏开发、特效制作等……
用黄仁勋的话来说就是:鼓励或者调动全球人民的激情,让他们了解什么叫三维的图形处理器,给他们提供很多工具进行创新。
GeForce256发布的第二年,英伟达就接到了微软的订单,为Xbox视频游戏机开发显卡。此后靠的则是“半年更新、一年换代”的市场操作。GeForce系列产品线不断丰富、全面布局,覆盖了高中低端各类市场,还学会了穿“马甲”,在原有芯片基础上稍作提升和改进,就作为新系列快速推向市场。将竞争对手卷得苦不堪言,英伟达也因此占据了GPU市场70%以上的份额。
到了2007年,英伟达市值已经上涨了500%以上,被《福布斯》杂志评为年度公司。
第二次反弹:并行计算的强劲推力。
早在2006年,英伟达就推出了革命性的通用计算架构CUDA,以及通用计算硬件Tesla GPU。但在当时,深度学习并没有现在这般受欢迎,只有一些大型企业、研究机构需要GPU来进行药物发明、天气建模、金融分析等高性能计算任务。
英伟达是从何时起开始加大力度激活对GPU并行计算能力的需求呢?答案是2009年。
这一年,英伟达举办了首届“GPU技术会议”,面向“使用GPU解决重要计算工作的开发者、工程师和科研人员”布道。
2006-2009年间,市场发生了什么变化?受摩尔定律的统治,个人消费者对电脑显卡的性能需求开始倦怠了。
期间,英伟达其实也有不错的产品发布,比如重量级的Tegra移动处理器,集成了ARM架构处理器和Geforce GPU,功耗比普通PC笔记本电脑低30倍。产品虽好,却很难激发起消费者的澎湃热情,毕竟市场上还有那么多显卡在卖,只要愿意等,就能以更香的价格入手。
同时,因为一些被OEM整合到苹果、戴尔、惠普的笔记本当中的GPU缺陷,导致“异常故障率”而成为集体诉讼的对象。仅2008年第一季度,英伟达的收入减少了约2亿美元。股价也从37美元一路跌到6美元左右。
于是英伟达开始加大高性能计算领域的布局,在首届GPU技术会议上,推出了代号为 “Fermi” 费米的下一代CUDA GPU架构,并大力宣传GPU在大规模并行计算任务的优势。
费米架构作为“核弹”是称职的,一方面,它的性能很高,基于该架构的Geforce 4系列产品在性能上成功压制了竞争对手,但这一架构的功耗和发热量也十分恐怖。
无论如何,自此之后,英伟达在计算领域广受欢迎,2010年全球最快的超级计算机天河-1A,就采用了7168颗英伟达的Tesla M2050 GPU,将大规模并行GPU与多核CPU结合,成为当时异构计算的代表。
2012年深度学习三巨头之一Geoffrey Hinton及其学生Alex,使用GPU来加速训练深度神经网络,在ImageNet竞赛中一鸣惊人,掀开了人工智能第三次浪潮的大幕,进一步带动了英伟达GPU的销量。
(Geoffrey Hinton 和 Alex Krizhevsky、 IIya Sutskever)
AI需求的增长,还帮助英伟达开拓了汽车市场,紧接着2013年发布的Geforce GTX Titan泰坦,代表了开普勒架构的顶级水准,成为自动驾驶汽车和高级驾驶辅助系统的算力基础,支撑关键的计算机视觉功能。
人工智能从学术界到工业界的强劲需求,推动了GPU价格和英伟达股价水涨船高,完成了一次惊艳世界的“反弹”。
(NVIDIA DRIVE)
图片新闻
最新活动更多
-
11月28日立即报名>>> 2024工程师系列—工业电子技术在线会议
-
11月29日立即预约>> 【上海线下】设计,易如反掌—Creo 11发布巡展
-
11月30日立即试用>> 【有奖试用】爱德克IDEC-九大王牌安全产品
-
即日-12.5立即观看>> 松下新能源中国布局:锂一次电池新品介绍
-
12月19日立即报名>> 【线下会议】OFweek 2024(第九届)物联网产业大会
-
即日-12.26火热报名中>> OFweek2024中国智造CIO在线峰会
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论