借助虚拟工艺加速工艺优化
我们不断向先进的CMOS的微缩和新存储技术的转型,导致半导体器件结构的日益复杂化。例如,在3D NAND内存中,容量的扩展通过垂直堆栈层数的增加来实现,在保持平面缩放比例恒定的情况下,这带来了更高深宽比图形刻蚀工艺上的挑战,同时将更多的阶梯连接出来也更加困难。人们通过独特的整合和图案设计方案来解决工艺微缩带来的挑战,但又引入了设计规则方面的难题。
二维 (2D) 设计规则检查 (DRC) 已不足以用来规范设计以达成特定性能和良率目标的要求。同时完全依赖实验设计 (DOE) 来进行工艺表征和优化也变得难以操作。以往工程师通过运用DOE实验来节省工艺研发的成本和时间,而现在他们需要进行数以百计的DOE才能达到目的,这反而需要大量的时间和物料,包括晶圆。
此外,工艺步骤之间非直观的交互作用,以及狭窄的工艺窗口,使得使用第一性原理建模来同时进行性能提升和良率优化变得尤为困难。因此需要对复杂工艺流程进行三维建模理解,而虚拟制造建模平台Coventor SEMulator3D为此而生。
SEMulator3D能提供哪些功能?
该软件可从一系列标准单元工艺步骤中创建3D虚拟工艺整合模型,以模拟工艺流程。SEMulator3D使用完全整合的工艺流程模型,可以预测工艺更改对下游工艺步骤的影响,这在过去则需要在晶圆厂中依靠“先制造和后测试”的循环来实现。
例如,工程师可以使用该软件对替换金属栅极 (RMG) FinFET进行快速建模,该元件使用先沟槽金属硬掩模 (TFMHM) 后段制程 (BEOL) 与自对准通孔工艺 (SAV)。工程师在完成虚拟加工的3D模型之后,就可以进行2D和3D的虚拟测量和电学性能参数提取。
该软件的电学分析组件增加了电阻和电容提取功能,有助于理解工艺和设计灵敏度。该软件提供了3D建模和验证电学性能的快捷平台。SEMulator3D中使用了有预测性的工艺模型和能精确匹配实际晶圆的3D结构,比其它孤立解决方案中使用的理想化几何结构,更能精确地反映所制造的器件,从而具有更高的精度。
DRAM演示
该演示展现了该平台如何根据刻蚀设备的性能参数(如材料的刻蚀选择比和气流流向通量分布)的变化对器件电学性能进行建模,形象地说明了虚拟制造的案例。简单的DRAM器件案例研究侧重于对栅极刻蚀行为和刻蚀特征的研究,通过对其做合理设定来满足预先设定的电学性能和良率目标。
该演示在虚拟制造中使用了典型的工作流程,包括四个步骤:
1. 一个标准工艺流程的建立,此艺流程支持工艺校准,然后生成具有预测性的3D结构模型。
2. 添加量测参数,以评价器件结构或电学行为。量测可能包括几何尺寸测量、3D DRC(设计规则检查)和电学参数测量。
3. 使用DOE(实验设计)和校准。
4. 数据分析,包括对工艺实现和/或设计变更的敏感性分析。
标准工艺流程的建立
该演示的标准工艺流程面向2X DRAM。该工艺由Coventor根据公开数据开发,未使用客户机密信息
图1:建立模型之后,电容器接触点结果如图所示。此时可以进行电学分析,研究电容器的边缘效应。
在本演示中,DRAM的有源区 (AA) 使用自对准四重图形技术 (SAQP) 和倾角20°的光刻-刻蚀-光刻-刻蚀 (LELE或LE2) 对多余的图形进行去除,其间距为28 nm。掩埋字线使用自对准双重图形化技术 (SADP),间距为40 nm,位线使用SADP,间距为44 nm。工艺流程在电容器接触点 (CC) 处结束,这使得软件可以进行电学分析,并能够分析电容器中的边缘效应。
添加重要度量
每个工艺步骤只需要几个易于理解和校准的几何和物理输入参数。工作流程的下一步是确定重要量工艺参数。就像在实际的晶圆厂一样,单元工艺参数,如沉积一致性、刻蚀的各向异性和选择比,他们之间相互影响并与其它设计参数交互作用,最终以复杂的方式影响最终器件的结构。
SEMulator3D支持添加两种几何测量。第一种是虚拟测量,支持测量模型结构并验证结构是否符合预期尺寸。第二种是结构搜索,相关步骤可以检查整个3D模型或某些部分,以确定测量极值,如膜厚度、线宽和接触面积的数值和位置。它还可以计算电网组件的数量,这有助于识别电网短路或开路(图2)。
图2:虚拟测量步骤(顶部)可帮助测量结构,包括CD、刻蚀深度和薄膜厚度。结构搜索步骤(底部)可确定测量极值,并计算电网组件的数量,如识别网络短路或开路。
当几何偏差的位置随工艺的变化而变化时,结构搜索特别有用。例如,图2显示了CC和AA之间的接口最小面积。软件将高亮显示该位置,而该位置容易成为器件失效的故障点。
器件电学性能模拟
器件的电学性能参数可以通过器件电学性能模拟来提取。通过使用与图2相同的模型,该演示可以在SEMulator3D中进行器件电学仿真。
图3:SEMulator3D可识别3D结构中的器件端口,并像TCAD中那样仿真电学性能,但不需要进行耗时的TCAD建模。
该软件有助于识别3D结构中的器件的端口和电极,并模拟器件的特性,如温度、带隙和电子/孔迁移率。该软件允许手动和自动识别节点(一个或多个连接在一起的引脚),初始电压或电流可以与选定节点的电压扫描一起设置。
图3中的电学仿真示例显示了两个栅极、两个源、一个漏和一个衬底。工程师可以自由设置偏置电压或初始电压以及电压扫描,如DRAM示例偏置电压表所示。
然后,工程师可以使用该软件自动提取重要电学性能指标,如一个电压点上的阈值电压 (Vth)、亚阈值摆幅 (SS)、漏致势垒下降 (DIBL) 和开启电流 (ION)。这些功能无需耗时和严格的TCAD建模即可实现,同时可以体现3D工艺变化对电学性能的影响。
图片新闻
最新活动更多
-
即日-11.13立即报名>>> 【在线会议】多物理场仿真助跑新能源汽车
-
11月28日立即报名>>> 2024工程师系列—工业电子技术在线会议
-
11月29日立即预约>> 【上海线下】设计,易如反掌—Creo 11发布巡展
-
11月30日立即试用>> 【有奖试用】爱德克IDEC-九大王牌安全产品
-
12月19日立即报名>> 【线下会议】OFweek 2024(第九届)物联网产业大会
-
即日-12.26火热报名中>> OFweek2024中国智造CIO在线峰会
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论